Abstract:
Representative implementations of devices and techniques provide dynamic calibration for imaging devices and systems. A reference pixel is arranged to receive an electrical reference signal and to output a calibration signal. The reference signal may be based on imaging illumination.
Abstract:
A sensor array arrangement for a time of flight measurement system is disclosed. The arrangement includes a plurality of pixels and circuitry. The plurality of pixels are configured such that a first plurality of pixels receive a first reference signal and a second plurality of pixels receive a second reference signal. The first and second reference signals are phase shifted with respect to each other. The circuitry calculates depth information by combining information from first and second pixel sensor signals. The first pixel sensor signal is based on the first reference signal. The second pixel sensor signal is based on the second reference signal.
Abstract:
An access control device includes a time of flight circuit configured to determine a distance information related to a distance between the access control device and a peripheral device. The access control device further includes a control module configured to control a transmission of a modulated light transmit signal by the time of flight circuit to the peripheral device. The modulated light transmit signal includes the distance information determined by the time of flight circuit of the access control device.
Abstract:
An apparatus includes a detector circuit configured to receive a modulated electromagnetic wave signal from an illumination source and to provide a detection signal having a frequency dependent on a modulation frequency of the modulated electromagnetic wave signal. The apparatus further includes a reference circuit configured to generate a reference signal based on the detection signal. The apparatus further includes a sensor circuit configured to generate based on the reference signal a sensor signal based on reflected modulated electromagnetic waves emitted by the illumination source and reflected by an object. The apparatus further includes a processing circuit configured to determine distance information related to the object based on the sensor signal.
Abstract:
Some aspects of the present disclosure provide system and method of operation of a driving circuit for a light emitting element in a Time-of-Flight (ToF) camera. A DC-DC converter is configured to emit a constant current, and is coupled in parallel to a first modulation switch configured to connect the driving circuit to ground. The first modulation switch is further configured to alternate connections between the current source and ground at a frequency in a desired range of operation to produce an AC current. In some embodiments, an RC circuit element is coupled to an output electrode of the light emitting element and configured to apply a reverse bias to decrease turn-off time of the light emitting element. In some embodiments, a second modulation switch is coupled to the output electrode and configured to apply the reverse bias across the light emitting element. Other systems and methods are also disclosed.
Abstract:
Time-of-flight (TOF) systems and techniques whereby a first exposure obtains pixel measurements for a first subset of pixels of a pixel array, using a first reference signal. For a second exposure, the first subset of the pixels, e.g., every second line of the pixel array, are set to a “hold” state, so that values obtained from the first measurement are maintained. A second exposure using a second reference signal is performed for a second subset of the pixels. The first and second reference signals may have different phase shifts relative to a signal modulating an optical signal being measured. The result is an array of pixels in which the first and second subsets hold results of the first and second exposures, respectively. These pixel values can then be read out all at once, with certain calculations being performed directly as pixel values are read from the pixel array.
Abstract:
A display device is provided. The display device includes a plurality of first light-emitting elements configured to emit light for displaying an optical image on a front side of the display device. Additionally, the display device includes at least one second light-emitting element configured to emit infrared light for illuminating a scene in front of the front side of the display device.
Abstract:
An example time-of-flight device may include an emitter component configured to emit a plurality of modulated signals toward an object during a transmission window, wherein the plurality of modulated signals emitted during the transmission window are to be used to determine a single distance measurement associated with the object and the time-of-flight device. The time-of-flight device may include a control component configured to cause, via the emitter component, emission of a first modulated signal and emission of a second modulated signal, of the plurality of modulated signals, toward the object, wherein the first modulated signal is emitted during a first portion of the transmission window and has a first phase of a plurality of preconfigured phases, and wherein the second modulated signal is emitted during a second portion of the transmission window and has a second phase of the plurality of preconfigured phases; and cause, using the emission of the first modulated signal and the emission of the second modulated signal during the transmission window, an emulation of a transmission of a measurement signal that has a measurement phase defined based on the first phase and the second phase, wherein the measurement phase is different from the first phase and the second phase.
Abstract:
A method for characterizing a time-of-flight sensor and/or a cover covering the time-of-flight sensor is provided. The method includes performing at least one coded modulation measurement with the time-of-flight sensor for obtaining measurement data for light reflected from the cover back to the time-of-flight sensor. A measurement range of the time-of-flight sensor is configured to end shortly after the cover for the at least one coded modulation measurement. Further, the method includes determining characterization data based on the measurement data, wherein the characterization data indicate a quantity related to the time-of-flight sensor and/or the cover.
Abstract:
An apparatus, having a transmitted light power/energy monitor configured to monitor transmitted power/energy of light transmitted by a light source, and a controller configured to determine and control a maximum transmit light time based on the transmitted light power/energy and a transmit light power/energy threshold based on time.