Abstract:
A rotary electric machine includes: a stator;a rotor; a control device that causes the stator to generate a rotating magnetic field; and a magnetic flux supply element supported by a rotary shaft so as to be rotatable relative to the rotary shaft, disposed radially inward of the rotor across a gap, and having auxiliary magnets. Each auxiliary magnet is formed such that opposite end portions thereof in the circumferential direction are radially opposed to holding magnets when the relative rotation angle of the magnetic flux supply element is a strengthening angle. The control device executes field weakening control or field strengthening control, thereby changing the relative rotation angle of the magnetic flux supply element.
Abstract:
An electric motor has a supplementary field magnet including a magnetization coil, a yoke serving as a magnetic path for magnetic flux produced by the magnetization coil, and a variable magnet. The supplementary field magnet is arranged on one axial end side of the rotor with a gap. A rotor core is provided with first projections projecting toward one axial end side of the electric motor from first magnetic pole portions, and second projections projecting toward the one axial end side from second magnetic pole portions and arranged radially inward of the first projections. The yoke includes an outer magnetic pole portion axially opposed to the first projections, and an inner magnetic pole portion axially opposed to the second projections such that an annular gap is formed between the inner magnetic pole portion and the outer magnetic pole portion.
Abstract:
An electric motor has a supplementary field magnet including a supplementary magnet, a yoke serving as a magnetic path for magnetic flux produced by the supplementary magnet. The supplementary field magnet is arranged on one axial end side of the rotor with a gap. A rotor core is provided with first projections projecting toward one axial end side of the electric motor from first magnetic pole portions having a first polarity, and second projections projecting toward the one axial end side from second magnetic pole portions having a second polarity, and arranged radially inward of the first projections. The yoke includes a magnetic pole portion axially opposed to the first projections and having the first polarity, and another magnetic pole portion axially opposed to the second projections and having the second polarity such that a gap is formed between the magnetic pole portions.
Abstract:
A management system for an experimental animal is provided. This management system includes an information identifying unit configured to identify experimental information on the experimental animal to be transported to an experiment site, and a stress value calculating unit configured to calculate a stress value indicating stress to be suffered by the experimental animal during transportation based on the experimental information. The experimental information includes at least a part of a transportation distance for the transportation of the experimental animal, a transportation period for the transportation of the experimental animal, the number of the experimental animals to be transported at a time, an age of the experimental animal, and information on pretreatment given to the experimental animal prior to the transportation.
Abstract:
An information provision system includes a processor and a memory storing instructions that, when executed by the processor, cause the information provision system to perform operations. The operations include: acquiring position information of a user and line-of-sight direction information of the user; estimating a target visually recognized by the user based on the position information, the line-of-sight direction information, and target position information for targets visually recognizable by the user; outputting, by sound, description information about the target in accordance with a setting; detecting a motion of a head of the user; estimating an intention of the user based on the motion during output of the description information; selecting the setting in accordance with the intention; and outputting, in response to change of the setting, the description information in accordance with the setting after the change.
Abstract:
An assist device includes a body mounting fixture, an actuator, an operation state detector, and a controller. The controller is configured to control drive of the actuator. The controller is configured to acquire an estimated posture of the wearer, which is estimated based on operation detection information detected by the operation state detector, when the actuator generates the assist torque. The controller is configured to determine whether or not the estimated posture is an unreasonable posture in which an excessive force is applied to a lower back portion.
Abstract:
A walking assist device has a frame, a plurality of wheels, drive units, a battery, and a drive control unit that controls the drive units. The walking assist device also has: a pair of right and left movable handles that are grasped by a user and movable back and forth with respect to the frame in accordance with arm swing performed during walk of the user; handle guide units provided on the frame to guide the movable handles in a movable range that matches the arm swing performed during walk of the user; and a grasp portion state detection unit that detects the state of the movable handles. The drive control unit controls the travel speed of the walking assist device by controlling the drive units on the basis of the state of the movable handles which is detected using the grasp portion state detection unit.
Abstract:
In manufacturing permanent magnets by filling insertion holes of a core with a magnet material, the density of the magnetic flux entering the magnet material can be restrained from being limited by the saturation magnetic flux density of the core. A guide member is placed so as to face a core in an axial direction. An orienting/magnetizing device faces the core and the guide member in the radial direction and applies a magnetic field to the guide member and the core in the radial direction. Insertion holes of the core are filled with the magnet material through guide holes of the guide member. The magnetic field is therefore applied from the orienting/magnetizing device to the magnet material passing through the guide holes.
Abstract:
A plurality of lamination steel sheets that form a rotor core are stacked so that the lamination steel sheets are angularly shifted from each other, and a plurality of cavities are formed. Permanent magnets are molded and disposed in the cavities by injection molding. Each permanent magnet has a uniform plate thickness, and is bent with respect to an axial direction so as to have a triangular wave shape or an S shape. The permanent magnets are magnetized after being disposed in the cavities. The paired magnet pieces have poles of the same polarity, which face each other in the circumferential direction of a rotor, and each of the magnet pieces is magnetized in directions of normals to a surface of the magnet piece, the surface having a linear sectional shape.