摘要:
A method of processing a stream of digital samples of an optical signal received by a coherent optical receiver. The digital sample stream is processed to generate a dispersion compensated sample stream. The dispersion compensated sample stream is then processed to compensate polarization dependent impairments of the optical signal.
摘要:
A method is provided for an equalization strategy for compensating channel distortions in a dual-polarization optical transport system wherein the received signal includes a complex signal of a first transmitted polarization component and a complex signal of a second transmitted polarization component. In a first step, a blind self recovery mode used a blind adaptation algorithm in calculating and modifying multiple complex equalizer transfer function coefficients to enables recovery of only the complex signal of the first transmitted polarization component. In a second step, equalization is performed in a training mode for recovery of the complex signals of the first and second transmitted polarization components. In a third step, equalization is performed in a data directed mode. The method is suited for a digital signal processing implementation in a coherent receiver.
摘要:
A method of recovering a clock signal from an optical signal received through an optical communications system. A digital sample stream is processed to generate a dispersion compensated signal. The dispersion compensated signal is then tapped to obtain upper side band and lower side, band signals of each received polarization of the optical signal. The upper side band sand lower side band signals are then processed to compensate polarization dependent impairments and the clock recovered from the resulting optimized.
摘要:
A carrier lock detector for a QPSK or 4-QAM system implements, a lock detection algorithm that maps detected signals onto one of first and second areas associated with nominal states defined by (I2⊕I3)·(Q2⊕Q3) and {overscore (Q1⊕Q2)}·(I1{overscore (I2I3)}+{overscore (I1)}I2I3)+({overscore (I1⊕I2)})·(Q1{overscore (Q2Q3)}+{overscore (Q1)}Q2Q3), or alternatively, by ({overscore (I1⊕I2)}·{overscore (Q2⊕Q3)})+({overscore (Q1⊕Q2)}·{overscore (I2⊕I3)}), respectively. When detected signals map onto one of the first areas, a first signal is generated. When detected signals map onto one of the second areas, a second signal is generated. When a difference between the first and second signals exceeds a threshold, a carrier lock detection signal is generated to enable a decoder. The carrier lock detector is able to detect carrier lock at a raw BER of 1e-2 or greater at a very low signal-to-noise ratio.
摘要翻译:用于QPSK或4-QAM系统的载波锁定检测器实现了一种锁定检测算法,该检测算法将检测到的信号映射到与由(I 2 / (Q 2)⊕Q3 3)和(超core SUB SUB SUB SUB⊕SUB SUB SUB SUB SUB SUB SUB SUB SUB SUB SUB SUB SUB SUB SUB SUB SUB SUB SUB SUB SUB SUB SUB SUB SUB SUB >)}。(I 1 SUB> {overscore(I 2 SUB> 3 SUB>}} )}({overscore(I< 1< 1< 2> 2>}})( Q (过大的(Q 2)3 Q 3)} + {overscore(Q 1> 1 S>)} Q “1”>“3”)})。 当检测到的信号映射到第一区域之一时,产生第一信号。 当检测到的信号映射到第二区域之一时,产生第二信号。 当第一和第二信号之间的差异超过阈值时,产生载波锁定检测信号以使能解码器。 载波锁定检测器能够以非常低的信噪比以1e-2或更大的原始BER检测载波锁定。
摘要:
A carrier lock detector for a QPSK or 4-QAM system implements a lock detection algorithm that maps detected signals onto one of first and second areas associated with nominal states defined by (I2⊕I3)·(Q2⊕Q3) and Q1⊕Q2·(I1 I2I3+ I1I2I3)+( I1⊕I2)·(Q1 Q2Q3+ Q1Q2Q3), or alternatively, by ( I1⊕I2· Q2⊕Q3)+( Q1⊕Q2· I2⊕I3), respectively. When detected signals map onto one of the first areas, a first signal is generated. When detected signals map onto one of the second areas, a second signal is generated. When a difference between the first and second signals exceeds a threshold, a carrier lock detection signal is generated to enable a decoder. The carrier lock detector is able to detect carrier lock at a raw BER of 1e-2 or greater at a very low signal-to-noise ratio.
摘要翻译:用于QPSK或4-QAM系统的载波锁定检测器实现锁定检测算法,该检测算法将检测到的信号映射到与由(I 2>⊕I3)定义的标称状态相关联的第一和第二区域之一 (Q 2)⊕Q3 3)和O O Y LE =⊕⊕⊕⊕⊕⊕⊕⊕>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>⊕⊕⊕⊕⊕⊕ 2 SUB>(I <1> I i> 2 i> Q <1> > Q 3 SUB> 3)或者替代地,由( I <2> O> O =“SLELE”> Q <2> =“SINGLE”> Q <1> SUB> 2 SUB> I SUB> SUB>)。 当检测到的信号映射到第一区域之一时,产生第一信号。 当检测到的信号映射到第二区域之一时,产生第二信号。 当第一和第二信号之间的差异超过阈值时,产生载波锁定检测信号以使能解码器。 载波锁定检测器能够以非常低的信噪比以1e-2或更大的原始BER检测载波锁定。
摘要:
A method of recovering a clock signal from an optical signal received through an optical communications system. A digital sample stream is processed to generate a dispersion compensated signal. The dispersion compensated signal is then tapped to obtain upper side band and lower side band signals of each received polarization of the optical signal. The upper side band and lower side band signals are then processed to compensate polarization dependent impairments, and the clock recovered from the resulting optimized.
摘要:
A method is provided for correcting a quadrature angle error that exists in the coherent receiver hardware of a dual-polarization optical transport system. The receiver hardware that causes the quadrature angle error is a 90 degree optical hybrid mixing device. The method involves generating an estimate of the quadrature angle error and compensating for the quadrature angle error by multiplying the first and second detected baseband signals by coefficients that are a function of the estimate of the quadrature angle error. The method is robust to severe channel distortion encountered within an optical fiber transmission channel as well as temperature effects and ageing of the 90 degree optical hybrid. The method is suited for a digital signal processing implementation in the coherent receiver when a modulation scheme used on a transmitted signal is quadriphase-shift keying (QPSK). In other embodiments, the method can be used to correct for quadrature angle error in modulation schemes such as binary PSK, M-ary PSK where M>4, or Quadrature Amplitude Modulation (QAM). The method can be implemented by an application-specific integrated circuit(ASIC).
摘要:
A signal equalizer for compensating impairments of an optical signal received through a link of a high speed optical communications network. At least one set of compensation vectors are computed for compensating at least two distinct types of impairments. A frequency domain processor is coupled to receive respective raw multi-bit in-phase (I) and quadrature (Q) sample streams of each received polarization of the optical signal. The frequency domain processor operates to digitally process the multi-bit sample streams, using the compensation vectors, to generate multi-bit estimates of symbols modulated onto each transmitted polarization of the optical signal. The frequency domain processor exhibits respective different responses to each one of the at least two distinct types of impairments.
摘要:
A method of a conveying data through an optical communications system. An optical signal is received through the optical communication system, the optical signal comprising data symbols and SYNC bursts, each SYNC burst having a predetermined symbol sequence. The received optical signal is oversampled to generate a multi-bit sample stream. The sample stream is partitioned into blocks of contiguous samples, wherein each block of samples partially overlaps at least one other block of samples and encompasses at least one SYNC burst and a plurality of data symbols. Each block of samples is independently processed to detect a value of each data symbol.
摘要:
A method is provided for an equalization strategy for compensating channel distortions in a dual-polarization optical transport system wherein the received signal includes a complex signal of a first transmitted polarization component and a complex signal of a second transmitted polarization component. In a first step, a blind self-recovery mode used a blind adaptation algorithm in calculating and modifying multiple complex equalizer transfer function coefficients to enable recovery of only the complex signal of the first transmitted polarization component. By recovering only a single polarization component in the first step the degenerate case of recovering only a single transmitted signal at both polarization component outputs of an equalizer is prevented. In a second step, equalization is performed in a training mode for calculating and modifying the multiple complex equalizer transfer function coefficients to enable recovery of the complex signals of the first and second transmitted polarization components. In a third step, equalization is performed in a data directed mode for continuing to calculate and modify the multiple complex equalizer transfer function coefficients to ensure continued recovery of the complex signals of the first and second transmitted polarization components. The method is suited for a digital signal processing implementation in a coherent receiver when a modulation scheme used on a transmitted signal is quadriphase-shift keying (QPSK). In other embodiments, the method can be used with modulation schemes such as binary PSK, M-ary PSK where M>4, or Quadrature Amplitude Modulation (QAM).