摘要:
A circuit for performing clock recovery according to a received digital signal 30. The circuit includes at least an edge sampler 105 and a data sampler 145 for sampling the digital signal, and a clock signal supply circuit. The clock signal supply circuit provides edge clock 25 and data clock 20 signals offset in phase from one another to the respective clock inputs of the edge sampler 105 and the data sampler 145. The clock signal supply circuit is operable to selectively vary a phase offset between the edge and data clock signals.
摘要:
The present invention provides a method for transmitting a broadcast signal. The method for transmitting a broadcast signal according to the present invention may comprise the steps of: encoding data pipe (DP) data corresponding to each of a plurality of DPs which transmit at least one service or service component; generating at least one signal frame by mapping the encoded DP data to data symbols; modulating data present in the at least one signal frame by means of an OFDM scheme; and transmitting a broadcast signal including the modulated data.
摘要:
The present invention provides a method for transmitting a broadcast signal. The method for transmitting a broadcast signal according to the present invention may comprise the steps of: encoding data pipe (DP) data corresponding to each of a plurality of DPs which transmit at least one service or service component; generating at least one signal frame by mapping the encoded DP data to data symbols; modulating data present in the at least one signal frame by means of an OFDM scheme; and transmitting a broadcast signal including the modulated data.
摘要:
A circuit for performing clock recovery according to a received digital signal 30. The circuit includes at least an edge sampler 105 and a data sampler 145 for sampling the digital signal, and a clock signal supply circuit. The clock signal supply circuit provides edge clock 25 and data clock 20 signals offset in phase from one another to the respective clock inputs of the edge sampler 105 and the data sampler 145. The clock signal supply circuit is operable to selectively vary a phase offset between the edge and data clock signals.
摘要:
Embodiments of the invention are generally directed to simultaneous transmission of clock and bidirectional data over a communication channel. An embodiment of a transmitting device includes a modulator to generate a modulated signal including a clock signal and a data signal, the clock signal being modulated by a first signal edge of the modulated signal and the data signal being modulated by a position of a second signal edge of the modulated signal; a driver to drive the modulated signal on a communication channel; an echo canceller to subtract reflected signals on the communication channel; and a data recovery module to recover a signal received on the communication channel, the received signal being encoded by Return-to-Zero (RZ) encoding, the signal being received simultaneously with driving the modulated signal on the communication channel.
摘要:
A circuit for performing clock recovery according to a received digital signal 30. The circuit includes at least an edge sampler 105 and a data sampler 145 for sampling the digital signal, and a clock signal supply circuit. The clock signal supply circuit provides edge clock 25 and data clock 20 signals offset in phase from one another to the respective clock inputs of the edge sampler 105 and the data sampler 145. The clock signal supply circuit is operable to selectively vary a phase offset between the edge and data clock signals.
摘要:
A timing recovery apparatus for compensating a sampling frequency offset of an input signal is provided. The timing recovery apparatus includes a timing error corrector configured to generate an output signal according to the input signal and a calibration signal, a gain controller configured to adjust at least one of a signal edge low-frequency error component and a signal edge high-frequency error component of the output signal and accordingly generate an adjusted signal, a timing error detector configured to generate an error signal according to the adjusted signal, and a calibration signal generator coupled to the timing error detector and the timing error corrector, for generating the calibration signal according to the error signal and outputting the calibration signal to the timing error corrector to compensate the sampling frequency offset of the input signal.
摘要:
A timing recovery system that provides a timing estimate between a transmitter clock and a receiver clock. The system includes a down-converter that converts a received intermediate frequency signal in the receiver and down-converts, using Fs/4 down-conversion, the received signal into baseband in-phase and quadrature phase signals. The baseband in-phase and quadrature phase signals are sent to a direct down-converter that frequency shifts the in-phase and quadrature phase. The frequency-shifted in-phase and quadrature phase baseband signals are then low-pass filtered in order to isolate the frequency components of interest, reduce noise, and remove zeros that are artifacts of the Fs/4 down-conversion. The signals are sent to a square-law non-linearity circuit that provides squaring non-linearity to generate non-linear in-phase and quadrature phase signals. The non-linear in-phase and quadrature phase signals are sent to a single-pole, low-pass post-filter circuit that generates the timing estimate.
摘要:
A timing recovery loop includes a sampler, a narrow band filter, an RMS normalizer, a timing error detector, and a sample controller. The sampler samples a received signal. The narrow band filter filters the sampled received signal so as to pass an upper band edge of the received signal and not a lower band edge of the received signal. The RMS normalizer sets an average power level of an output of the filter to a substantially constant value. The timing error detector detects a timing error with respect to an output of the RMS normalizer. The sample controller controls the sampler in response to the detected timing error.
摘要:
A system and method for provide a stable gain from an adaptive gain control device in a signal path. An echo canceller is also located in the signal path, and is used to provide performance information regarding losses in the signal. This performance information is fed to the automatic gain control device via a connection. The automatic gain control device thereafter uses the performance information to determine a maximum gain that might be provided based upon losses cause by echo conditions. The gain however is limited in order to provide for a stable system. The performance information includes a loss rate that includes a combination of the echo return loss and the echo return loss enhancement.