摘要:
In one embodiment, a path computation element (PCE) in a computer network receives one or more path computation requests (PCReqs), and records a time of each PCReq and the corresponding requested bandwidth. Based on this information, the PCE may determine a traffic profile of the computer network, and may augment a traffic engineering database (TED) with requested bandwidth according to time based on the traffic profile. As such, prior to a particular time, the PCE may determine placement of tunnels within the traffic profile for the particular time.
摘要:
In one embodiment, a router in a non-originating domain receives a signal to establish a tunnel, the signal having an identification (ID) of an originating path computation element (PCE) of an originating domain from where the signal to establish the tunnel originated. In response to determining that establishment of the tunnel fails, the router may signal the failure of the establishment to a local PCE of the non-originating domain, the signaling indicating the ID of the originating PCE to cause the local PCE to provide updated routing information of the non-originating domain to the originating PCE.
摘要:
In one embodiment, once activation of use of a backup tunnel is detected for a primary tunnel, then a level of congestion of the path of the backup tunnel may be determined. In response to the level being greater than a threshold, a head-end node of the primary tunnel is triggered to reroute the primary tunnel (e.g., requesting to a path computation element). Conversely, in response to the level not being greater than the threshold, the backup tunnel is allowed to remain activated.
摘要:
A technique performs an efficient constrained shortest path first (CSPF) optimization of Traffic Engineering (TE) Label Switched Paths (LSPs) in a computer network. The novel CSPF technique is triggered upon the detection of an event in the computer network that could create a more optimal path, such as, e.g., a new or restored network element or increased path resources. Once the novel CSPF technique is triggered, the computing node (e.g., a head-end node of the TE-LSP or a Path Computation Element, PCE) determines the set of nodes adjacent to the event, and further determines which of those adjacent nodes are within the TE-LSP (“attached nodes”). The computing node performs a CSPF computation rooted at the closest attached node to determine whether a new computed path cost is less than a current path cost (e.g., by a configurable amount), and if so, triggers optimization of the TE-LSP along the new path.
摘要:
A fast reroute (FRR) technique is implemented at the edge of a network. In accordance with the technique, if an edge device detects a node or link failure that prevents it from communicating with a neighboring routing domain, the edge device reroutes at least some data packets addressed to that domain to a backup edge device which, in turn, forwards the packets to the neighboring domain. The rerouted packets are designated as being “protected” (i.e., rerouted) data packets before they are forwarded to the backup edge device. To differentiate which data packets are protected and which are not, the backup edge device employs different sets of VPN label values for protected and non-protected network traffic. That is, the backup edge device may allocate two different VPN label values for at least some destination address prefixes that are reachable through the neighboring domain: a first VPN label value for FRR protected traffic and a second VPN label value for non-protected traffic. Upon receiving a data packet containing a protected VPN label value, the backup edge device is not permitted to reroute the packet a second time, e.g., in response to another inter-domain node or link failure, thereby preventing loops from developing at the edge of the network.
摘要:
Customer edge (CE) to CE device verification checks initiate routes from available CEs as a set of path verification messages, destined for remote CE routes serving a remote VPN. An extended community attribute, included among the attributes of the path verification message, stores the identity of the originating CE router. The path verification message propagates across the network, and transports the identity of the originating CE router because the originator identity is not overwritten by successive routing. Upon receipt by the remote CE, the originator is determinable from the extended community attribute. A further reachability field is also included in the extended community attribute and indicates whether per CE or per prefix is appropriate for the particular route in question. In this manner, CE-CE connectivity checks identify CEs which are reachable from other CEs. Accordingly, such a mechanism allows for route reachability aggregation on a per-CE or per-prefix reachability basis.
摘要:
A system receives a packet at a first node. The packet is destined for a second node. The system identifies a full routing node from a plurality of network devices. The full routing node is capable of providing routing information for each of the nodes within the plurality of network devices. The plurality of network devices comprises a subset of nodes, and a subset of full routing nodes. The subset of nodes is not capable of providing routing information for each of the nodes within the plurality of network devices. The system transmits the packet to the full routing node for future transmission to the second node.
摘要:
In one embodiment, a path computation element (PCE) in a computer network receives one or more path computation requests (PCReqs), and records a time of each PCReq and the corresponding requested bandwidth. Based on this information, the PCE may determine a traffic profile of the computer network, and may augment a traffic engineering database (TED) with requested bandwidth according to time based on the traffic profile. As such, prior to a particular time, the PCE may determine placement of tunnels within the traffic profile for the particular time.
摘要:
In one embodiment, a particular field area router (FAR), in a local computer network (e.g., a mesh network) having a plurality of FARs, advertises a common subnet prefix assigned to the local computer network into a global computer network. Each of the plurality of FARs of the local computer network is configured to accept any traffic destined to the local computer network, and a tunnel overlay is built among the plurality of FARs. Upon receiving a packet at the particular FAR destined to a particular device in the local computer network, and in response to the particular FAR not having a host route to the particular device, it forwards the packet on the tunnel overlay to another of the plurality of FARs of the local computer network.
摘要:
A data communication device (e.g., a router) originates a network configuration message in response to a network topology change or so as to refresh a configuration message. The data communication device encodes a timestamp in the network configuration message. The timestamp indicates a time of originating the network configuration message. Further, the data communication device transmits the network configuration message over the network to other network devices that, in turn, initiate further broadcast of at least a portion of contents of the network configuration message. Based on the timestamp of the network configuration message, the data communication devices receiving the network configuration message identify transmission time value indicating how long the network configuration message takes to be conveyed over the network to the other network devices. The data communication devices utilize the transmission time value as a timeout period for determining whether a data communication device failure occurs.