摘要:
A filter installation arrangement and an associated method of installing a filter assembly to a partition. A filter assembly includes a filter element that extends along a longitudinal axis. The filter element includes an end cap disposed at an end of the filter element. An adjustment device of the installation arrangement axially displaces the end cap of the filter element in a first direction. An insert portion is inserted adjacent the end cap subsequent to the axial displacement of the end cap. The insert portion is configured to limit axial displacement of the end cap in a second direction that is opposite the first direction.
摘要:
A gas turbine inlet fogging system using electrohydrodynamic (EHD) atomization is disclosed. In one embodiment, the inlet fogging system includes: a gas turbine system including an air inlet duct, and a plurality of electrohydrodynamic (EHD) nozzles coupled to a water supply, the plurality of EHD nozzles configured to provide a water-spray for reducing a temperature of inlet air drawn into the air inlet duct. In another embodiment, an inlet fogging system for a gas turbine system includes: a plurality of electrohydrodynamic (EHD) nozzles, and a water supply in fluid communication with the plurality of EHD nozzles.
摘要:
An ice and/or frost preventing system for positioning in an airflow tunnel having an air inlet includes a plurality of waveguide passages positioned in the airflow tunnel; an air filter positioned in each waveguide passage; a microwave energy source coupled to each waveguide passage; a first screen positioned in the airflow tunnel upstream of the plurality of waveguide passages; and a second screen positioned in the airflow tunnel downstream of the plurality of waveguide passages. The microwave energy sources and the first and second screens create a guided, standing wave, microwave energy that substantially prevents at least one of ice and frost from forming on the air filters. A turbine system including the ice and/or frost preventing system is also described.
摘要:
The present application provides an inlet air cooling system for cooling a flow air in a gas turbine engine. The inlet air cooling system may include an inlet filter house, a transition piece, an inlet duct, and an inlet ultrasonic water atomization system positioned about the inlet filter house, the transition piece, or the inlet duct to cool the flow of air.
摘要:
A vertical ring magnetic separator for de-ironing of coal ash comprises a rotating ring (101), an inductive medium (102), an upper iron yoke (103), a lower iron yoke (104), a magnetic exciting coil (105), a feeding opening (106), a tailing bucket (107) and a water washing device (109). The feeding opening (106) is used for feeding the coal ash to be de-ironed, and the tailing bucket (107) is used for discharging the non-magnetic particles after de-ironing. The upper iron yoke (103) and the lower iron yoke (104) are respectively arranged at the inner and outer sides of the lower portion of the rotating ring (101). The water washing device (109) is arranged above the rotating ring (101). The inductive medium (102) is arranged in the rotating ring (101). The magnetic exciting coil (105) is arranged at the periphery of the upper iron yoke (103) and the lower iron yoke (104) so as to make the upper iron yoke (103) and the lower iron yoke (104) to be a pair of magnetic poles for generating a magnetic field in the vertical direction, wherein the inductive medium (102) is layers of steel plate meshes, each steel plate mesh is woven by wires, and ridge-shape sharp corners are formed at the edges of the wires. A method for magnetically separating and de-ironing of coal ash, utilizes the vertical ring magnetic separator for de-ironing of coal ash. By adopting the vertical ring magnetic separator and the method of magnetic separation for de-ironing, the de-ironing efficiency is improved by at least 20%.
摘要:
A system for conditioning an airstream entering an air-breathing machine includes an air conditioning system (ACS) configured for adjusting a physical property of the airstream, wherein the ACS comprises a module. The module includes a non-media conditioning system configured for adjusting a physical property of the airstream if an ambient condition is within a range, wherein the non-media conditioning system comprises nozzles adapted for spraying a fluid onto the airstream. The module also includes a media conditioning system configured for adjusting a physical property of the airstream to provide additional output of the air-breathing machine, wherein the media conditioning system comprises a direct exchange medium and a fluid distribution manifold. The ACS operates in a direct evaporative mode if the fluid is approximately greater than a dew point temperature and operates in a direct chilling mode if the fluid is approximately less than a dew point temperature.
摘要:
Disclosed herein is an thermal management system for an electric vehicle, comprising a heat generating component cooling device and a heat pump device, wherein the heat pump device comprises a compressor, a first heat exchanger, a throttling element and a second heat exchanger which are connected through pipelines and form a loop; the first heat exchanger and the second heat exchanger are both dual channel exchanger, two channels of the first heat exchanger and the second heat exchanger are sealed and isolated respectively, first channels of the first heat exchanger and the second heat exchanger communicate with other components of the heat pump device through pipelines; the heat generating component cooling device communicates with second channels of the first heat exchanger and the second heat exchanger respectively to form loops which can be closed, and the two loops formed by the heat generating component cooling device with the first heat exchanger and the second heat exchanger respectively can be open alternatively. The thermal management system of the present invention can ensure full use of the heat from heat generating components in the electric vehicle and improve the cooling effect of the heat generating components and the comfort of the cabin.
摘要:
According to embodiments of the present invention, an air conduction sensor for detecting a sound from a user is provided. The air conduction sensor includes a housing comprising an opening, wherein a rim of the opening is configured to at least substantially attach to a skin or a clothing of the user; a microphone coupled to the housing such that there is an air gap between the microphone and the skin or the clothing, and wherein the microphone is configured to detect the sound. A system and a method for monitoring a health condition of a user are also provided.
摘要:
The present application provides an inlet air cooling system for cooling a flow air in a gas turbine engine. The inlet air cooling system may include an inlet filter house, a transition piece, an inlet duct, and an inlet ultrasonic water atomization system positioned about the inlet filter house, the transition piece, or the inlet duct to cool the flow of air.
摘要:
A system includes a gas turbine system, including an air intake system that includes a housing, a first plurality of air conditioning coils, a second plurality of air conditioning coils that is downstream relative to the first plurality, and a baffle extending between each of the first and second pluralities of air conditioning coils, wherein the baffle is configured to direct an air flow through the first or second pluralities of air conditioning coils in a closed position, and the baffle is configured to enable air flow to bypass the first and second pluralities of coils in an opened position.