摘要:
A Load to Block Boundary instruction is provided that loads a variable number of bytes of data into a register while ensuring that a specified memory boundary is not crossed. The boundary may be specified a number of ways, including, but not limited to, a variable value in the instruction text, a fixed instruction text value encoded in the opcode, or a register based boundary.
摘要:
Multiple sets of character data having termination characters are compared using parallel processing and without causing unwarranted exceptions. Each set of character data to be compared is loaded within one or more vector registers. In particular, in one embodiment, for each set of character data to be compared, an instruction is used that loads data in a vector register to a specified boundary, and provides a way to determine the number of characters loaded. Further, an instruction is used to find the index of the first delimiter character, i.e., the first zero or null character, or the index of unequal characters. Using these instructions, a location of the end of one of the sets of data or a location of an unequal character is efficiently provided.
摘要:
Embodiments relate to reducing a number of read ports for register pairs. An aspect includes maintaining an active pairing indicator that is configured to have a first value or a second value. The first value indicates that the wide operand is stored in a wide register. The second value indicates that the wide operand is not stored in the wide register. The operand is read from either the wide register or a pair of registers based on the active pairing indicator. The active pairing indicator and the values of the set of wide registers are stored to a storage based on a request to store a register pairing status. A saved pairing indicator and saved values of the set of wide registers is loaded from the storage respectively into an active pairing register and wide registers.
摘要:
Embodiments of the invention relate to implementing run-time instrumentation indirect sampling by address. An aspect of the invention includes reading sample-point addresses from a sample-point address array, and comparing, by a processor, the sample-point addresses to an address associated with an instruction from an instruction stream executing on the processor. A sample point is recognized upon execution of the instruction associated with the address matching one of the sample-point addresses. Run-time instrumentation information is obtained from the sample point. The run-time instrumentation information is stored in a run-time instrumentation program buffer as a reporting group.
摘要:
The invention relates to implementing run-time instrumentation indirect sampling by address. An aspect of the invention includes a method for implementing run-time instrumentation indirect sampling by address. The method includes reading sample-point addresses from a sample-point address array, and comparing, by a processor, the sample-point addresses to an address associated with an instruction from an instruction stream executing on the processor. The method further includes recognizing a sample point upon execution of the instruction associated with the address matching one of the sample-point addresses. Run-time instrumentation information is obtained from the sample point. The method also includes storing the run-time instrumentation information in a run-time instrumentation program buffer as a reporting group.
摘要:
Embodiments of the invention relate to implementing run-time instrumentation indirect sampling by instruction operation code. An aspect of the invention includes reading sample-point instruction operation codes from a sample-point instruction array, and comparing, by a processor, the sample-point instruction operation codes to an operation code of an instruction from an instruction stream executing on the processor. A sample point is recognized upon execution of the instruction with the operation code matching one of the sample-point instruction operation codes. The run-time instrumentation information is obtained from the sample point. The run-time instrumentation information is stored in a run-time instrumentation program buffer as a reporting group.
摘要:
Embodiments relate to reducing a number of read ports for register pairs. An aspect includes executing an instruction. The instruction identifies a pair of registers as containing a wide operand which spans the pair of registers. It is determined if a pairing indicator associated with the pair of registers has a first value or a second value. The first value indicates that the wide operand is stored in a wide register, and the second value indicates that the wide operand is not stored in the wide register. Based on the pairing indicator having the first value, the wide operand is read from the wide register. Based on the pairing indicator having the second value, the wide operand is read from the pair of registers. An operation is performed using the wide operand.
摘要:
Embodiments of the invention relate to implementing run-time instrumentation sampling in transactional-execution mode. An aspect of the invention includes determining, by a processor, that the processor is configured to execute instructions of an instruction stream in a transactional-execution mode, the instructions defining a transaction. Completion of storage operations of the instructions is interlocked to prevent instruction-directed storage until completion of the transaction. A sample point is recognized during execution of the instructions while in the transactional-execution mode. Run-time-instrumentation-directed storing is performed, upon successful completion of the transaction, run-time instrumentation information obtained at the sample point.
摘要:
Embodiments relate to reducing a number of read ports for register pairs. An aspect includes executing an instruction. The instruction identifies a pair of registers as containing a wide operand which spans the pair of registers. The executing of the instruction includes determining whether a pairing indicator associated with the pair of registers has a first value, a second value or a third value. Based on the pairing indicator having the first value, the wide operand is read from the wide register. Based on the pairing indicator having the second value the wide operand is read from the pair of registers. Based on the pairing indicator having the third value, the wide operand is speculatively read from a predetermined register. The predetermined register consists of the wide register or the pair of registers.
摘要:
Embodiments of the invention relate to implementing run-time instrumentation sampling in transactional-execution mode. An aspect of the invention includes run time instrumentation sampling in transactional execution mode. The method includes determining, by a processor, that the processor is configured to execute instructions of an instruction stream in a transactional-execution mode, the instructions defining a transaction. Completion of storage operations of the instructions is interlocked to prevent instruction-directed storage until completion of the transaction. A sample point is recognized during execution of the instructions while in the transactional-execution mode. Run-time-instrumentation-directed storing is performed, upon successful completion of the transaction, run-time instrumentation information obtained at the sample point.