摘要:
When a plurality of cordless telephones (e.g., digital cordless telephones) are used within range of one another, base units of one or more of the digital cordless telephones may receive transmissions from others of the digital cordless telephones. Conventionally, the base unit would simply ignore information relating to that received from an unintended remote handset, i.e., a remote handset having a security code which fails to match that of the receiving base unit. However, in accordance with the principles of the present invention, information regarding the unique security code received with respect to other remote handsets (i.e., those having security codes which do not match that of the receiving base unit), are logged and used in a way which provides a unique best available channel list to each of the digital cordless telephones so that similar digital cordless telephones operating in a similar environment do not attempt selection of channels in a similar way (causing channel inclarity and/or interference). In a first embodiment, the list of best available channels is randomized based on the unique security code of the relevant digital cordless telephone. In a second embodiment, the list of best available channels is randomized only when another digital cordless telephone becomes within transmission range of the relevant digital cordless telephone. In a third embodiment, a list of best available channels is uniquely indexed for each digital cordless telephone based on a ranking of the digital cordless telephones within transmission range of one another. For instance, the highest ranking digital telephone in an environment with three digital cordless telephones attempts use of, preferably in order, the 1st, 4th, 7th, 10th, etc. channels.
摘要:
The current draw of a wireless device, e.g., a cordless telephone, is minimized for a cradled remote handset drawing power from an AC outlet. This allows a greater portion of the total current amperage provided by the AC to DC converter to be allowed to charge the battery in the remote unit, and reduces the overall maximum or peak value of the current draw of the wireless device. With an improved peak power budget, a smaller (and presumably less expensive) AC to DC adapter than otherwise necessary may be used to power the wireless device. In one aspect, sniff operations of the remote handset are disabled or otherwise suppressed while the remote handset is in the cradle of the base unit, e.g., receiving a quick charge or trickle charge to its battery. In a second aspect, sniff operations of the base unit are disabled or otherwise suppressed while the remote handset is in the cradle of the base unit. In a last aspect, the charging mode of the battery in the remote handset of a wireless device changes based on activity in the remote handset.
摘要:
A wireless piconet transceiver is mounted in a vehicle, and a complementary fixed wireless piconet transceiver is mounted in a garage, service station, police squad car, etc., for communication with the vehicle when parked adjacent thereto. The vehicle establishes a temporary piconet network with the user's home piconet. Vehicle operational statistics are tracked and maintained in a centralized vehicle computer database. This database can be manipulated to store the data desired by the vehicle owner. Via a wireless piconet connection, this database can transmitted to another piconet device such as the owner's computer. This computer system can be part of a wireless piconet, such as Bluetooth, This provides the computer with the ability to communicate with external wireless devices such as a cell phone, PDA, computer, or a cordless telephone. This invention allows for the configuration, or selection of desired vehicle data to be tracked. This configuration can take place on the owner's home computer (or laptop) and consequently transmitted to the vehicle computer using a wireless piconet protocol, e.g., the Bluetooth protocol. Additionally, this configuration can be manipulated by a direct interface to the vehicle provided by the manufacturer. Exemplary vehicle statistics which may be tracked include, but are not limited to, miles per gallon, average miles per hour, maximum MPH, miles driven per trip, driving statistics based on time of day and/or on identified driver, rotations of the engine per minute (RPM), temperature of engine, fuel gauge level, oil pressure, tires, brakes, engine coolant, wiper fluid, global positioning satellite (GPS) system, and/or even compressed voice from inside car cockpit during operation of vehicle.
摘要:
A wireless piconet network device includes a GPS receiver to determine and provide earth coordinates to a gatekeeper of a wireless network so as to provide a level of security to wireless networks which requires accessing wireless devices to be within predefined boundary coordinates. The automatic restriction of access to a wireless network (e.g., a wireless local area network (LAN) such as a piconet network) by requiring a wireless network device to provide earth coordinates (e.g., GPS location information) as part of an establishment or maintenance of a connection to a wireless network, independent of a range of communication of any device in the wireless network. A wireless piconet network device outside of predetermined earth coordinates of a secured area (e.g., a building, a room in a building, a desk in a room in a building, etc.) may be denied access to resources on the wireless network, and/or required to provide additional authorization information so as to confirm authorized secured status of the entering wireless device.
摘要:
A wireless piconet network device includes a GPS receiver to determine and provide earth coordinates to a gatekeeper of a wireless network so as to provide a level of security to wireless networks which requires accessing wireless devices to be within predefined boundary coordinates. The automatic restriction of access to a wireless network (e.g., a wireless local area network (LAN) such as a piconet network) by requiring a wireless network device to provide earth coordinates (e.g., GPS location information) as part of an establishment or maintenance of a connection to a wireless network, independent of a range of communication of any device in the wireless network. A wireless piconet network device outside of predetermined earth coordinates of a secured area (e.g., a building, a room in a building, a desk in a room in a building, etc.) may be denied access to resources on the wireless network, and/or required to provide additional authorization information so as to confirm authorized secured status of the entering wireless device.
摘要:
A wireless piconet network device includes a GPS receiver to determine and provide earth coordinates to a gatekeeper of a wireless network so as to provide a level of security to wireless networks which requires accessing wireless devices to be within predefined boundary coordinates. The automatic restriction of access to a wireless network (e.g., a wireless local area network (LAN) such as a piconet network) by requiring a wireless network device to provide earth coordinates (e.g., GPS location information) as part of an establishment or maintenance of a connection to a wireless network, independent of a range of communication of any device in the wireless network. A wireless piconet network device outside of predetermined earth coordinates of a secured area (e.g., a building, a room in a building, a desk in a room in a building, etc.) may be denied access to resources on the wireless network, and/or required to provide additional authorization information so as to confirm authorized secured status of the entering wireless device.
摘要:
Apparatus and method to minimize power usage by electronic devices. In a particular disclosed example, the battery power of a remote handset is reduced by extending the sniff period of a cordless telephone when the remote handset is remote from its base unit and the user is not likely to use the cordless telephone (e.g., when away from the house or when asleep). A low power mode module causes the electronic device, e.g., the remote handset of a cordless telephone, to remain in an extended low power STANDBY mode, or to extends the period of the periodic transition to a receive only STANDBY mode to check status registers at the base unit, at appropriate times. In one embodiment, a low power mode table contains entries defining periods of time during which the remote handset may transition between the low power STANDBY mode and the receive only STANDBY mode. The remote handset transitions to a fully powered transmit/receive (TDD) ON mode, e.g., in response to an appropriate status condition, or in response to the activation of a particular button or sequence of buttons at the remote handset. The extended STANDBY mode may alternatively be activated in response to input from an external device such as a home security system indicating that the user of the cordless telephone is not willing or able to answering any incoming telephone calls. The extended STANDBY mode may also be entered upon determination by the cordless telephone that the telephone line is already in use by another extension (thereby rendering unlikely any receipt of a ring signal condition from the base unit).
摘要:
The present invention provides a device for connecting a power supply to a rechargeable device, in which a detection unit is adapted to detect power levels of a battery to output a first signal when a low power level of the battery is detected, and a second signal when a sufficient power level of the battery is detected. A power control unit is adapted to receive the first and second signals, and to disconnect circuitry in the rechargeable device from the battery when the first signal is asserted, and to connect the circuitry in the rechargeable device to the battery when the second signal is asserted.
摘要:
Apparatus and methods for automatically (i.e., without requiring manual user adjustment) reducing gain in one or both acoustic feedback paths of a cordless telephone when the handset and its base unit are operating in close proximity to one another, preventing uncontrolled feedback and audible howling even before it begins. A proximity detection module determines a distance between the handset and its base unit using an appropriate technique, e.g., using RSSI, round trip delay times, and/or GPS measurements. If the distance indicates that the handset is within close proximity to the base unit, appropriate attenuation of the microphone gain and/or speaker volume of the base unit and/or the handset will be implemented. One or more fixed levels of attenuation may be implemented based on a corresponding one or more measured close proximity distances between the handset and its base unit. Thus, the attenuation may result in a muting, a fixed amount of attenuation (e.g., 6 decibels (dB), 12 dB, or other appropriate fixed amount), or may be a variable amount dependent upon a relationship to the distance between the handset and the base unit.
摘要:
A method and apparatus to perform a real-time drift correction of a remote handset's local oscillator in a digital cordless telephone. The remote handset begins in a standby (sniff) mode. The remote handset periodically wakes from a sleep mode and goes into a normal link verification mode. Once in the link verification mode, the remote handset enters a time division duplexing (TDD) mode and attempts to establish a link with a base unit based on the timing of the TDD data frame. After the remote handset establishes a link with the base unit, the remote handset requests a security word from the base unit. Upon receiving the requested security word, the remote handset determines if the requested security word matches a security word of the remote handset. The remote handset implements a software frequency adjustment of its local oscillator. Once per frame, the remote handset enters a timing recovery state where the current state of the frame is compared with a previous state. When the cumulative timing slip is greater than a designated threshold, a frequency adjustment is made. During this exchange of commands between the remote handset and base unit, the remote handset continuously adjusts its local oscillator to achieve frequency alignment within, e.g., 1 part per million (ppm). Alternatively, frequency alignment may be achieved to a specified value. The period of the frequency alignment can be lengthened (or even suspended) during certain power critical modes to reduce power consumption. For example, the period of the link verify operations (and thus the frequency alignment) can be lengthened or suspended when the remote handset is being quick charged. Moreover, the period of the link verify operations can be adjusted based on a voltage level of the battery in the remote handset.