Abstract:
An LED lamp (100) includes a lamp enclosure (10) and two LED modules (30). The lamp enclosure has a concave housing (11). The housing includes an elongated bottom plate (111) and two lateral plates (115) extending upwardly from two opposite lengthwise sides of the bottom plate respectively. An opening (156) is defined at a top side of the lamp enclosure. The LED modules each are mounted at a joint between the bottom plate and a corresponding of the lateral plates in such a manner that at least a portion of lights emitted by the LED modules is firstly directed to and reflected by an internal surface of the bottom plate, and then directed to an outside through the opening.
Abstract:
The present invention provides methods and compositions for establishing and maintaining growth of undifferentiated stem cells. In particular, the present invention provides synthetic growth matrices for stem cells, wherein said cells are capable of going through multiple passages while remaining in an undifferentiated state.
Abstract:
A mounting device (10) for mounting a heat sink (40) onto a printed circuit board (60) with a heat generating electronic component (50) mounted thereon. The mounting device includes a mounting frame (101) and two resilient clips (102) attached to the mounting frame. The mounting frame includes two first mounting arms (1011) and two second mounting arms (1012) disposed above the first mounting arms. The first mounting arms are configured for being attached to the printed circuit board. The resilient clips are configured for being sandwiched between the second mounting arms of the mounting frame and the heat sink. The resilient clips each include two resilient arms (1023) configured for providing a resilient force which urges the heat sink toward the heat generating electronic component.
Abstract:
The present invention relates to methods and compositions for modulating calcium channels. In particular, the present invention provides methods and compositions for modulating (e.g., disrupting) Cav1.3a calcium channels for research and therapeutic methods (e.g., treating dopaminergic diseases and conditions).
Abstract:
of a communication network. A message sender can attach a user-selected profile to a publicly-broadcasted message. A message viewer can read the publicly-broadcasted message only if the viewer's profile matches the sender's profile attached to the message. When a sender profile and viewer profile match, a communication channel is established between the sender and viewer. The sender's and viewer's profiles are registered on an open directory to which all parties, even parties unknown to each other, have access. The open directory structure is used in creating a header file, also referred to herein as a “stamp,” that is attached to messages or requests generated by the users. The selection of categories to be included in the header file is a procedure that is independent from the creation of the message. The header file can be combined dynamically at the point of sending the message by a message sender or at the point of searching messages by a message viewer. The messages may include text, graphics, audio or video. The broadcasting of the messages may occur via the Internet, radio, satellite, cable, and wired or wireless telephone networks.
Abstract:
A new, cost effective process for the production of ultrafine particles which is based on mechanically activated chemical reaction of a metal compound with a suitable reagent. The process involves subjecting a mixture of a metal compound and a suitable reagent to mechanical activation to increase the chemical reactivity of the reactants and/or reaction kinetics such that a chemical reaction can occur which produces a solid nano-phase substance. Concomitantly, a by-product phase is also formed. This by-product phase is removed so that the solid nano-phase substance is left behind in the form of ultrafine particles. During mechanical activation a composite structure is formed which consists of an intimate mixture of nano-sized grains of the nano-phase substance and the reaction by-product phase. The step of removing the by-product phase, following mechanical activation, may involve subjecting the composite structure to a suitable solvent which dissolves the by-product phase, while not reacting with the solid nano-phase substance. The process according to the invention may be used to form ultrafine metal powders as well as ultrafine ceramic powders. Advantages of the process include a significant degree of control over the size and size distribution of the ultrafine particles, and over the nature of interfaces created between the solid nano-phase substance and the reaction by-product phase.