Abstract:
Disclosed is a method for preparing a carbon-supported metal oxide and/or alloy nanoparticle catalyst. According to the method, a carbon-supported metal oxide and/or alloy nanoparticle catalyst is prepared by depositing metal oxide and/or alloy nanoparticles on a water-soluble support and dissolving the metal oxide and/or alloy nanoparticles deposited on the water-soluble support in an anhydrous polar solvent containing carbon dispersed therein to support the metal oxide and/or alloy nanoparticles on the carbon. The anhydrous polar solvent has much lower solubility for the water-soluble support than water and is used to dissolve the water-soluble support. The use of the anhydrous polar solvent instead of water can prevent the water-soluble support present at a low concentration in the solution from impeding the support of the nanoparticles on the carbon, thus providing a solution to the problems of environmental pollution, high cost, and complexity encountered in conventional chemical and physical synthetic methods.
Abstract:
Disclosed are a perovskite compound, a method for producing the perovskite compound, a catalyst for a fuel cell including the perovskite compound, and a method for producing the catalyst. The perovskite compound overcomes the low stability of palladium due to its perovskite structural properties. Therefore, the perovskite compound can be used as a catalyst material for a fuel cell. In addition, the use of palladium in the catalyst instead of expensive platinum leads to an improvement in the price competitiveness of fuel cells. The catalyst is highly durable and catalytically active due to its perovskite structure.
Abstract:
A catalyst containing a carbon support and a core-shell nanoparticle supported on the carbon support, wherein a core of the core-shell nanoparticle is cobalt metal not containing a heterogeneous element and the shell contains carbon. The catalyst for an oxygen reduction reaction of the present disclosure is a catalyst in which the cobalt core-carbon shell nanoparticle is supported on the carbon support through ligand stabilization and heat treatment. The catalyst can be synthesized to have high dispersibility. In particular, it can be used as an electrode catalyst of a cathode to improve the oxygen reduction activity and durability of a fuel cell operating under an alkaline atmosphere.
Abstract:
Provided is a composite polymer electrolyte membrane for a fuel cell, including: a porous fluorinated polymer support; and a perfluorinated sulfonic acid polymer resin membrane which fills the inside of pores of the porous fluorinated polymer support and covers an external surface of the porous fluorinated polymer support.
Abstract:
Provided is a catalyst for oxygen reduction reaction comprising an alloy comprising at least one selected from Pt, Pd and Ir supported on a carbon carrier functionalized with poly(N-isopropylacrylamide) (PNIPAM). The catalyst for oxygen reduction reaction has electronic ensemble effects by virtue of the carbon carrier functionalized with poly(N-isopropylacrylamide) (PNIPAM), and thus shows improved oxygen reduction activity and durability as compared to conventional catalysts supported on carbon.
Abstract:
Provided are a perfluorinated sulfonic acid polymer membrane having a porous surface layer, which includes a surface layer and a bottom layer present at the bottom of the surface layer, wherein the surface layer is a porous layer, and the bottom layer is non-porous dense layer, and a method for preparing the same through a solvent evaporation process.
Abstract:
Provided are a method for preparing a Nafion membrane having a through-pore free monolithic porous structure throughout the bulk of the membrane through a one-step process very easily and a Nafion membrane having a through-pore free monolithic porous structure obtained from the method. The Nafion membrane having such a porous structure may have an increased surface area, and thus may improve the membrane/catalyst interfacial area and transport characteristics.
Abstract:
Provided is a fluorine-doped tin oxide support, a platinum catalyst for a fuel cell having the same, and a method for producing the same. Also described is a high electrical conductivity and electrochemical durability by doping fluorine to the tin oxide-based support through an electrospinning process. Thus, while resolving a degradation issue of the carbon support in the conventional commercially available platinum/carbon (Pt/C) catalyst, what is designed is to minimize an electrochemical elution of dopant or tin, which is a limitation of the tin oxide support itself and has excellent performance as a catalyst for a fuel cell.
Abstract:
Disclosed are a catalyst electrode for a fuel cell, a method for fabricating the catalyst electrode, and a fuel cell including the catalyst electrode. The presence of an ionomer-ionomer support composite in the catalyst electrode prevents the porous structure of the catalyst electrode from collapsing due to oxidation of a carbon support to avoid an increase in resistance to gas diffusion and can stably secure proton channels. The presence of carbon materials with high conductivity is effective in preventing the electrical conductivity of the electrode from deterioration resulting from the use of a metal oxide in the ionomer-ionomer support composite and is also effective in suppressing collapse of the porous structure of the electrode to prevent an increase in resistance to gas diffusion in the electrode. Based on these effects, the fuel cell exhibits excellent performance characteristics and prevents its performance from deteriorating during continuous operation.
Abstract:
The present disclosure discloses an asymmetric electrolyte membrane, a membrane electrode assembly including the same, a water electrolysis apparatus including the same and a method for manufacturing the same. More particularly, it discloses an asymmetric electrolyte membrane having a porous layer and a dense layer at the same time, a membrane electrode assembly including the same, a water electrolysis apparatus including the same and a method for manufacturing the same.