摘要:
A dynamic random access memory (DRAM) cell comprising a deep trench storage capacitor having an active transistor device partially disposed on a side wall of the trench. The side wall is aligned to a first crystallographic plane having a crystallographic orientation along a single crystal axis. A process for manufacturing such a DRAM cell comprises: (a) forming a deep trench in a substrate, (b) forming a faceted crystal region along the trench side wall having a single crystallographic orientation, and (c) forming a transistor device partially disposed on the faceted crystal region in the side wall. The faceted crystal region may be formed by growing an oxide collar, such as by local thermal oxidation under oxidation conditions selected to promote a higher oxidation rate along a first family of crystallographic axes than along a second family of crystallographic axes.
摘要:
A grooved planar DRAM transfer device having a grooved gate formed in a groove in a substrate located between source and drain regions. The grooved gate has sidewall portions and a bottom portion which defines a channel therealong. The bottom portion includes a doped pocket such that the threshold voltage Vt on the bottom portion is substantially less than Vt on the sidewall portions, such that the sidewall portions predominantly control electric current through the device.
摘要:
A dynamic random access memory (DRAM) cell comprising a deep trench storage capacitor having an active transistor device partially disposed on a side wall of the trench. The side wall is aligned to a first crystallographic plane having a crystallographic orientation along a single crystal axis. A process for manufacturing such a DRAM cell comprises: (a) forming a deep trench in a substrate, (b) forming a faceted crystal region along the trench side wall having a single crystallographic orientation, and (c) forming a transistor device partially disposed on the faceted crystal region in the side wall. The faceted crystal region may be formed by growing an oxide collar, such as by local thermal oxidation under oxidation conditions selected to promote a higher oxidation rate along a first family of crystallographic axes than along a second family of crystallographic axes.
摘要:
A reduction in parasitic leakages of shallow trench isolation vias is disclosed wherein the distance between the silicon nitride liner and the active silicon sidewalls is increased by depositing an insulating oxide layer prior to deposition of the silicon nitride liner. Preferably, the insulating oxide layer comprises tetraethylorthosilicate. The method comprises of etching one or more shallow trench isolations into a semiconductor wafer; depositing an insulating oxide layer into the trench; growing a thermal oxide in the trench; and depositing a silicon nitride liner in the trench. The thermal oxide may be grown prior to or after deposition of the insulating oxide layer.