摘要:
The lithium secondary battery of this invention uses a nonaqueous electrolyte including lithium tetrakis(pentafluorophenyl)borate as a part or whole of an electrolytic salt. As a result, the lithium secondary battery exhibits better charge-discharge cycle performance than a lithium secondary battery using a conventional lithium salt as the electrolytic salt.
摘要:
In a secondary cell comprising an electrode unit enclosed in a cell can and adapted to deliver electric power generated by the electrode unit via electrode terminal assemblies, each electrode terminal assembly comprises an electrode terminal member extending through a center hole in a lid of the can, an insulating seal member provided in the center hole of the lid around a screw shank of the electrode terminal member, and a nut screwed on the screw shank of the electrode terminal member projecting outward from can. The insulating seal member is in engagement with the can and the flange of the electrode terminal member and nonrotatable relative to the cell can and the flange, whereby the electrode terminal member is prevented from rotating with the nut when the electrode terminal assembly is fixed to the lid.
摘要:
A secondary cell comprises an electrode unit housed in a cell can comprising a cylinder having a bottom and a closed opening, and a current collector plate 50 is provided at one end of the electrode unit. The current collector plate 50 has a plurality of protrusions 52 extending radially thereof and joined to an edge of the electrode unit. The surface of the current collector plate 50 to be joined to the bottom wall of the cylinder has a flat region R extending on a predetermined closed-loop track on the surface, and the portions of the current collector plate 50 and the cylinder to be joined are subjected along the flat region R to laser welding from outside the cylinder.
摘要:
In a non-aqueous electrolyte secondary battery employing an olivine-type lithium phosphate as a positive electrode active material, power regeneration performance is improved. The non-aqueous electrolyte secondary battery for use as a power source for regenerative charging includes: a positive electrode including a mixture layer containing a positive electrode active material, a binder agent, and a carbon material as a conductive agent; a negative electrode; and a non-aqueous electrolyte. The mixture layer contains, as the positive electrode active material, an olivine-type lithium phosphate represented by the formula LiMPO4, where M is at least one element selected from the group consisting of Co, Ni, Mn, and Fe, and the mixture layer further contains a metal oxide such as a lithium-containing transition metal oxide containing at least Ni or Mn.
摘要:
Disclosed is a non-aqueous electrolyte secondary cell excellent in capacity retention rate and I-V characteristics after repeated cycles. The secondary cell contains a negative electrode active material containing scaly graphite particles and coated graphite particles. The coated graphite particles contain graphite particles and a coating layer coating the surfaces of the graphite particles. The coating layer contains amorphous carbon particles and an amorphous carbon layer. It is preferable that the negative electrode active material contain 1 to 6% by mass of the scaly graphite particles and that the graphite particles, the amorphous carbon particles, and the amorphous carbon layer be in a mass ratio of 100:α:β where 1≦α≦10, 1≦β≦10, and α≦1.34β.
摘要:
A prismatic secondary battery is provided with a negative/positive electrode collector (18), which are disposed on either one of a wound negative/positive electrode substrate exposed portion (15), and a negative/positive electrode collector receiving member (19) which is disposed on another surface. At least one of the negative/positive electrode collector has a recess portion (30) formed in part on a surface on the side not facing the negative/positive electrode substrate exposed portions so as to be thinner than the thickness of the other portion. Resistance welding is carried out in this recessed part, thereby a large welding nugget is formed between the negative/positive electrode exposed portion and the negative/positive electrode collector.
摘要:
Disclosed is a non-aqueous electrolyte secondary cell excellent in capacity retention rate and I-V characteristics after repeated cycles. The secondary cell contains a negative electrode active material containing scaly graphite particles and coated graphite particles. The coated graphite particles contain graphite particles and a coating layer coating the surfaces of the graphite particles. The coating layer contains amorphous carbon particles and an amorphous carbon layer. It is preferable that the negative electrode active material contain 1 to 6% by mass of the scaly graphite particles and that the graphite particles, the amorphous carbon particles, and the amorphous carbon layer be in a mass ratio of 100:α:β where 1≦α≦10, 1≦β≦10, and α≦1.34β.
摘要:
The present invention aims to productively provide a non-aqueous electrolyte secondary cell having excellent safety and high capacity. The above object can be achieved by adopting the following configuration. The non-aqueous electrolyte secondary cell comprises a wound electrode assembly formed by winding a positive electrode having a positive electrode active material layer, a negative electrode having a negative electrode active material layer and a separator separating the positive and negative electrodes, wherein: the filling density of the positive electrode active material layer is 2.0-2.8 g/cc; the filling density of the negative electrode active material layer is 1.0-1.5 g/cc; each thickness of the positive electrode and the negative electrode is 100-200 μm; the thickness of the separator is 10-30% of each thickness of the positive and negative electrodes; and the air permeability per unit thickness of the separator is 7.0-27.0 sec/100 cc•μm.
摘要:
In a prismatic sealed secondary battery according to an embodiment of the present invention, at least one of positive electrode substrate exposed portions and negative electrode substrate exposed portions of an electrode assembly is split into two groups, and therebetween are disposed intermediate members that are made of a resin material and hold one or more connecting conductive members. The two split substrate exposed portions are electrically connected to collector members and to at least one of the connecting conductive members by resistance-welding. Voids are formed in resin material portions of the intermediate members that are located around the resistance-welded portions of the connecting conductive members. Therefore, lowered resistance between the substrate exposed portions and the collector members and stabilized quality of the welds are realized and the manufacturing yield of the prismatic sealed secondary battery is improved.
摘要:
The invention provides a secondary battery having positive electrode plates 14 and negative electrode plates, with insulating tapes 22A, 22B affixed to the cut end portions 14d, including an active material layer 14b portion thereof, of either the positive electrode plates 14 or the negative electrode plates, or both. These electrode plates are stacked or rolled alternately, with separators 23 interposed, into an electrode group that is sealed, together with electrolyte, inside a battery case. The insulating tapes 22A, 22B have an adhesive application area L2 and a nonadhesive application area L1, and are affixed in such a manner that the nonadhesive application area L1 is positioned centrally on the active material layer 14b of the electrode plate 14, and moreover so that part of the adhesive application area L2 is positioned on the active material layer 14b at the cut end portion 14d.