Abstract:
A database management system (DBMS) generates a query execution plan including information representing one or more database (DB) operations necessary for executing a query, and executes the query in accordance with the query execution plan. In the execution of the query, the DBMS dynamically generates tasks for executing the DB operations and executes the dynamically generated tasks. The query execution plan includes a plurality of query blocks, which are sets of one or more DB operations. When newly generating a task, the DBMS executes determination processing of simultaneous-task-generation number. The determination processing of simultaneous-task-generation number is to calculate, targeting each of the query blocks, the number of simultaneous task generation, which is the number of tasks simultaneously generatable as tasks for executing the query block. The number of the dynamically generated tasks is equal to or smaller than the number of simultaneous task generation.
Abstract:
Provided is a computer system including: a computer running as a DB server; a storage system including a plurality of disk drives for storing data; and a management module, in which: at least one of the plurality of disk drives stores data of a DB schema written by the computer; the management module specifies the DB schema to be accessed based on a received query, transmits, to the storage system, an instruction to copy at least a portion of the data of the specified DB schema from the disk drive to a memory, and transmits, to the storage system, an instruction to control an rpm of the disk drive that stores the data of the specified DB schema; and the storage system controls the rpm of the disk drive based on the instruction. Accordingly, power consumption of the storage system can be reduced even if installed disks increase in number.
Abstract:
A storage system for providing a preferable data access performance by performing controls considering database management system (DBMS) execution information or database process priorities, by acquiring static configurational information of a DBMS by means of a DBMS information acquisition and communication program, a DBMS information communication section, and a host information setting program; acquiring DBMS execution information by means of a query plan acquisition program, the DBMS information communication section, and a process performance management program; acquiring information on priorities of database processes given by the process performance management program; and storing them in disk I/O management information with process priorities, DBMS execution information, and DBMS data information, in which cache control section in a storage system control program controls a data cache by referring to the above information.
Abstract:
A computer system identifies jobs affected by a fault which occurs in any device or mechanism in a storage system to control the execution of such jobs. The computer system includes a DBMS server device, a virtualization switch device, and storage device. Each of these devices holds part of data mapping information on a data mapping path from a particular DB table accessed by a job, through a logical volume for storing the table, to physical disk units for distributively storing data on the volume. The management server device acquires the part of data mapping information from each device, and integrates the data mapping information on a job-by-job basis. When any device or mechanism fails on the data mapping path, the management server device identifies jobs affected by the fault with reference to the data mapping information. The management server device also controls the execution of these jobs.
Abstract:
A second computer for monitoring a database management system and a storage subsystem introduced into a first computer, is provided with a step of acquiring profile information of an application, a step of determining a tuning item in accordance with the acquired profile information, and a step of transferring the determined tuning item to the first computer and the storage subsystem.
Abstract:
A computer system identifies jobs affected by a fault which occurs in any device or mechanism in a storage system to control the execution of such jobs. The computer system includes a DBMS server device, a virtualization switch device, and storage device. Each of these devices holds part of data mapping information on a data mapping path from a particular DB table accessed by a job, through a logical volume for storing the table, to physical disk units for distributively storing data on the volume. The management server device acquires the part of data mapping information from each device, and integrates the data mapping information on a job-by-job basis. When any device or mechanism fails on the data mapping path, the management server device identifies jobs affected by the fault with reference to the data mapping information. The management server device also controls the execution of these jobs.
Abstract:
A pre-fetch server, which is connected to a DB server running a DBMS and to a storage apparatus storing DB data, stores information required for judging whether or not a pre-fetch is effective. Judgment on whether or not the pre-fetch will be effective is performed when a pre-fetch I/O is issued. If the pre-fetch server judges that the pre-fetch will be effective, it issues the pre-fetch I/O to the storage apparatus.
Abstract:
In the present invention, there is provided means which sets priorities of DB data for each management unit, means which copies data from a primary site to a secondary site in an order of the data priorities, and means which, when a disaster has occurred in the primary site and recovery of a DB is performed in the secondary site, performs recovery of data in the order of the data priorities to sequentially bring the data to a usable state.
Abstract:
The present invention provides techniques, including a method and system, for relocating data between storage systems. In one embodiment of the present invention a host collects usage information from a plurality of storage systems, and determines the relocation destination LU for data stored in the LU to be relocated. The host alters an LU logical position name table that determines matching between the logical position names of data and LUs. It also carries out data relocation between storage subsystems by shifting data stored in an origin LU to be relocated to a destination LU. In another embodiment relocation of files is provided.
Abstract:
A database recovery method including a computer and a storage system, in which: the storage system includes a disk drive for storing data; the disk drive includes a data volume, a snapshot volume, a database log for storing an update log, and an update journal for storing update information of the data volume; a recovery point for indicating an end point of a range to which the update journal is to be applied and a starting point of a range to which the database log is to be applied is recorded to recover the data volume; and when the database is to be recovered, the update journal is applied to the snapshot volume up to the recovery point, the snapshot volume after the update is switched to the data volume, and the database log after the recovery point is applied to the data volume that is set by switching.