Abstract:
In one embodiment, a method includes receiving an image of a tender document; performing optical character recognition (OCR) on the image; extracting an identifier of the tender document from the image based at least in part on the OCR; comparing the extracted identifier with content from one or more data sources; requesting complementary information from at least one of the one or more data sources based at least in part on the extracted identifier; receiving the complementary information; and outputting at least some of the complementary information for display on a mobile device. Exemplary systems and computer program products are also described.
Abstract:
A method includes receiving or capturing a digital image using a mobile device, and using a processor of the mobile device to: determine whether an object depicted in the digital image belongs to a particular object class among a plurality of object classes; determine one or more object features of the object based at least in part on the particular object class at least partially in response to determining the object belongs to the particular object class; build or select an extraction model based at least in part on the one or more determined object features; and extract data from the digital image using the extraction model. The extraction model excludes, and/or the extraction process does not utilize, optical character recognition (OCR) techniques. Related systems and computer program products are also disclosed.
Abstract:
According to one aspect, a computer-implemented method of discovering processes for robotic process automation (RPA) includes: recording a plurality of event streams, each event stream corresponding to a human user interacting with a computing device to perform one or more tasks; concatenating the event streams; segmenting some or all of the concatenated event streams to generate one or more individual traces performed by the user interacting with the computing device, each trace corresponding to a particular task; clustering the traces according to a task type; identifying, from among some or all of the clustered traces, one or more candidate processes for robotic automation; prioritizing the candidate processes; and selecting at least one of the prioritized candidate processes for robotic automation. Further aspects building upon the above include generating RPA models to perform tasks determined to be processes for RPA. Corresponding systems and computer program products are also described.
Abstract:
According to one aspect, a computer-implemented method of discovering processes for robotic process automation (RPA) includes: recording a plurality of event streams, each event stream corresponding to a human user interacting with a computing device to perform one or more tasks; concatenating the event streams; segmenting some or all of the concatenated event streams to generate one or more individual traces performed by the user interacting with the computing device, each trace corresponding to a particular task; clustering the traces according to a task type; identifying, from among some or all of the clustered traces, one or more candidate processes for robotic automation; prioritizing the candidate processes; and selecting at least one of the prioritized candidate processes for robotic automation. Further aspects building upon the above include generating RPA models to perform tasks determined to be processes for RPA. Corresponding systems and computer program products are also described.
Abstract:
A computer program product includes program instructions configured to cause a processor, to: perform optical character recognition (OCR) on an image of a document; extract an identifier of the document from the image based at least in part on the OCR; compare at least portions of the identifier with content from one or more reference data sources; and determine whether the identifier is valid based at least in part on the comparison. The content comprises global address information; while the content from the reference is derived from geographic information. Deriving the content from the geographic information includes: obtaining the geographic information; and parsing the geographic information according to a set of predefined heuristic rules, where the heuristic rules are configured to normalize the global address information obtained from the one or more sources according to a single convention for representing address information.
Abstract:
Systems, computer program products, and techniques for detecting objects depicted in digital image data are disclosed, according to various exemplary embodiments. The inventive concepts uniquely utilize internal features to accomplish object detection, thereby avoiding reliance on detecting object edges and/or transitions between the object and other portions of the digital image data, e.g. background textures or other objects. The inventive concepts thus provide an improvement over conventional object detection since objects may be detected even when edges are obscured or not depicted in the digital image data. In one aspect, a computer-implemented method of detecting an object depicted in a digital image includes: detecting a plurality of identifying features of the object, wherein the plurality of identifying features are located internally with respect to the object; and projecting a location of one or more edges of the object based at least in part on the plurality of identifying features.
Abstract:
According to one embodiment, a computer-implemented method is configured for building a classification and/or data extraction knowledge base using an electronic form. The method includes: receiving an electronic form having associated therewith a plurality of metadata labels, each metadata label corresponding to at least one element of interest represented within the electronic form; parsing the plurality of metadata labels to determine characteristic features of the element(s) of interest; building a representation of the electronic form based on the plurality of metadata labels; generating a plurality of permutations of the representation of the electronic form by applying a predetermined set of variations to the representation; and training either a classification model, an extraction model, or both using: the representation of the electronic form, and the plurality of permutations of the representation of the electronic form. Corresponding systems and computer program products are also disclosed.
Abstract:
Techniques for improved binarization and extraction of information from digital image data are disclosed in accordance with various embodiments. The inventive concepts include independently binarizing portions of the image data on the basis of individual features, e.g. per connected component, and using multiple different binarization thresholds to obtain the best possible binarization result for each portion of the image data independently binarized. Determining the quality of each binarization result may be based on attempted recognition and/or extraction of information therefrom. Independently binarized portions may be assembled into a contiguous result. In one embodiment, a method includes: identifying a region of interest within a digital image; generating a plurality of binarized images based on the region of interest using different binarization thresholds; and extracting data from some or all of the plurality of binarized images. Corresponding systems and computer program products are also disclosed.
Abstract:
A method is provided for organizing data sets. In use, an automatic decision system is created or updated for determining whether data elements fit a predefined organization or not, where the decision system is based on a set of preorganized data elements. A plurality of data elements is organized using the decision system. At least one organized data element is selected for output to a user based on a score or confidence from the decision system for the at least one organized data element. Additionally, at least a portion of the at least one organized data element is output to the user. A response is received from the user comprising at least one of a confirmation, modification, and a negation of the organization of the at least one organized data element. The automatic decision system is recreated or updated based on the user response. Other embodiments are also presented.
Abstract:
An efficient method and system to enhance digital acquisition devices for analog data is presented. The enhancements offered by the method and system are available to the user in local as well as in remote deployments yielding efficiency gains for a large variety of business processes. The quality enhancements of the acquired digital data are achieved efficiently by employing virtual reacquisition. The method of virtual reacquisition renders unnecessary the physical reacquisition of the analog data in case the digital data obtained by the acquisition device are of insufficient quality. The method and system allows multiple users to access the same acquisition device for analog data. In some embodiments, one or more users can virtually reacquire data provided by multiple analog or digital sources. The acquired raw data can be processed by each user according to his personal preferences and/or requirements. The preferred processing settings and attributes are determined interactively in real time as well as non real time, automatically and a combination thereof.