摘要:
An exposure method includes generating a reticle exposure pattern based on a target pattern, performing a lithography simulation based on the reticle exposure pattern to generate a simulation pattern that simulates a resist pattern formed by reticle exposure, generating differential data between the target pattern and the simulation pattern, generating a first electron-beam exposure pattern based on the differential data, generating a reticle based on the reticle exposure pattern, performing an optical exposure process with respect to a resist by use of the reticle, and performing an electron-beam exposure process with respect to the resist based on the first electron-beam exposure pattern.
摘要:
In the exposure data preparation method for charged particle beam exposure in which an exposure object is exposed while dose is adjusted for each pattern, the method including the steps of: classifying a pattern in terms of a target linewidth; setting a standard characteristic showing the relationship between a standard dose and a resultant linewidth of a resist pattern for a group of patterns having the target linewidth; and preparing exposure data by correcting a shape and dose so that a characteristic showing the relationship between dose of each pattern having the target linewidth and a resultant linewidth of a resist pattern follows the standard characteristic.
摘要:
A deposition energy distribution when a charged particle beam is made incident upon a resist film, is approximated by a sum of element distributions having Gaussian distributions. A pattern area density map partitioning the pattern layout plane into small regions, is defined for each element distribution. First and second sub-steps are repeated for each of the pattern area density maps. In the first sub-step, an area density of each small region is obtained. In the second sub-step, in accordance with an energy deposition rate, an exposure dose assigned to a pattern in a first small region, an area of the pattern and the area density of the first small region, the deposition energy to be given to the target small region is obtained and the corrected area density is calculated. A deposition energy at an evaluation point on a pattern layout plane is calculated from the corrected area densities.
摘要:
Exposure verification is applied to exposure data indicating a pattern to be exposed by a charged particle beam. If an error point is extracted from the exposure data by the exposure verification, the values of coefficients are modified and exposure data is regenerated taking into consideration the coefficients whose values have been modified. Thus, exposure data is re-generated by changing each of the coefficient values within its appropriate range.
摘要:
A pattern size correcting device includes: a testing photomask (1) having a test pattern; a quantifying unit (2) that quantifies, using the testing photomask (1), size variation in the test pattern as a function of distance and in relation to an open area ratio; an open area ratio calculating unit (3) that divides an exposure area having a plurality of actual device patterns into a plurality of correction areas and calculates the open area ratio of the respective correction areas; a data correcting unit (4) that inputs the open area ratio calculated by the open area ratio calculating unit (3) into a result of the quantification that uses the photomask (1), calculates size variations of the actual device patterns in the respective correction areas, and corrects design data of the actual device patterns based on the calculation; and a proximity effect correcting unit correcting a proximity effect. This correcting device enables quantitative estimation of size variation occurring in a pattern exposed in lithography and easy and accurate correction of pattern size based on the estimation.
摘要:
A parameter extracting method capable of accurately and effectively extracting parameters used for charged particle beam exposure. The method comprises the steps of forming an unknown parameter layer on a known parameter layer, forming a resist on the unknown parameter layer, subjecting the resist to exposure through patterns changed in an existing range, and extracting parameters of the unknown parameter layer using the exposure result. In the parameter extraction method, parameters of layers lower than the unknown parameter layer are known. Therefore, layer combinations to be considered and the number of experimental data can be drastically reduced. After parameter extraction of the unknown parameter layer, an unknown parameter layer is newly formed on the layer. Then, the parameter thereof is extracted in the same manner. Thus, the parameter is extracted sequentially from lower layers and therefore, the parameter in the multitiered structure having various layer combinations can be accurately and effectively extracted.
摘要:
A method for generating backscattering intensity with which charged particles are backscattered to a resist layer when charged particle beam is irradiated onto the resist layer which is formed on plural layers, each of which includes a pattern of one substance or a plurality of substances. For the nth layer from the resist layer among the plural layers, there is provided, for each of the substances in the nth layer, a reflection coefficient rn, which corresponds with the number of particles reflected by the nth layer; a transmission coefficient tn, which corresponds with the number of particles transmitted by the nth layer; and a scatter distribution in which the charged particles are scattered within the nth layer. The generation method comprises a first step of generating the backscattering intensity by using the reflection coefficient rn, the transmission coefficient tn, and the scatter distribution.