摘要:
Systems and methods for communicating with or powering implantable medical devices using a direct inductive/acoustic telemetry link are disclosed. An illustrative system includes an interrogator device located outside of the patient's body, an implantable medical device including an energy translator circuit adapted to convert inductive or RF signals received from the interrogator device into an acoustic signal for driving an acoustic transducer, and a remote device adapted to sense one or more parameters within the body.
摘要:
Methods, systems, and apparatus are described for posture detection. Orientations of a body are detected with respect to first and second axes. A movement of the body with respect to a third axis is also detected. Three-dimensional orientations of the body are determined based on the orientations and the movement. The detected posture may be used for applications such as controlling medical devices and detecting patient disorders.
摘要:
An acoustic energy delivery system for delivering acoustic energy to an implantable medical device (“IMD”). The system includes an IMD having a power source and an energy delivery device. The energy delivery device includes a controller and an array of ultrasonic elements electrically coupled to the controller and configured to deliver acoustic energy to the IMD. Methods of delivering acoustic energy to an IMD are also disclosed.
摘要:
A cardiac rhythm management system includes a defibrillation lead impedance measurement system by which defibrillation lead impedance is measured using a test current source different from the defibrillation output supply. A resulting voltage is measured to determine the defibrillation lead impedance. Using low amplitude test currents (e.g., 10-20 milliamperes) avoids patient discomfort. Charge-balanced test currents avoids charge build-up that may interfere with sensing and avoids electrode degeneration. Different current amplitudes and resulting measured voltages provide a differential defibrillation lead impedance measurement for canceling undesired effects. Bidirectional test currents account for polarity effects on the defibrillation lead impedance measurement. A calibration/correction technique uses measurements of known resistances to correct a measurement of an unknown defibrillation lead impedance measurement.
摘要:
A cardiac rhythm management system includes a defibrillation lead impedance measurement system by which defibrillation lead impedance is measured using a test current source different from the defibrillation output supply. A resulting voltage is measured to determine the defibrillation lead impedance. Using low amplitude test currents (e.g., 10-20 milliamperes) avoids patient discomfort. Charge-balanced test currents avoids charge build-up that may interfere with sensing and avoids electrode degeneration. Different current amplitudes and resulting measured voltages provide a differential defibrillation lead impedance measurement for canceling undesired effects. Bidirectional test currents account for polarity effects on the defibrillation lead impedance measurement. A calibration/correction technique uses measurements of known resistances to correct a measurement of an unknown defibrillation lead impedance measurement.
摘要:
A planar antenna for wireless information transfer can include a planar loading portion electrically coupled to a driven node of a wireless communication circuit, and a folded conductive strip portion coupled to the planar loading portion, the folded conductive strip portion comprising at least two segments laterally offset from each other and at least partially laterally overlapping with each other. The planar loading portion can be configured to establish a specified bandwidth of a second operating frequency range, leaving a first specified operating frequency range substantially unchanged.
摘要:
Apparatus and techniques can include a planar antenna that can include a folded conductive strip portion coupled to a driven node of a wireless communication circuit, the folded conductive strip portion comprising at least two segments laterally offset from each other and at least partially laterally overlapping with each other, and a first region oriented along a first axis in a plane of the planar antenna and a second region oriented along a second axis in the plane of the planar antenna, the two axes and the two regions specified to provide polarization diversity of radiation from the planar antenna. The planar antenna can include a stub coupled to the folded conductive strip portion, the stub configured to provide a first specified operating frequency range at or near resonance using a mode corresponding to a total physical path length along the folded conductive strip portion.
摘要:
Methods, systems, and apparatus for recharging medical devices implanted within the body are disclosed. An illustrative method of recharging an implanted medical device includes delivering a charging device to a location adjacent to the implanted medical device, activating a charging element coupled to the charging device and transmitting charging energy to a receiver of the implanted medical device, and charging the implanted medical device using the transmitted charging energy from the charging device.
摘要:
An apparatus comprises an electrostimulation energy storage capacitor, a circuit path that provides pacing stimulation from the capacitor through the load, a constant current neural stimulation circuit that is switchable into the circuit path to provide neural stimulation through the load and switchable out of the circuit path to provide the pacing stimulation through the load, and a control circuit configured to selectively enable delivery of the pacing stimulation or the constant current neural stimulation.
摘要:
An apparatus includes a cardioversion or defibrillation therapy energy source coupled to a bridge circuit. The bridge circuit includes a first switch for connection to a first implantable electrode, a second switch for connection to a second implantable electrode, a third switch coupled for connection to the first implantable electrode, and a fourth switch coupled for connection to the second implantable electrode. The first and second switches are formed on a shared first IC, the third and fourth switches are formed on a shared second IC, and the second IC is stacked substantially superjacent to the first IC such that a cathode of the first switch is coupled to an anode of the third switch and a cathode of the second switch is coupled to an anode of the fourth switch.