Abstract:
There is provided a transmitting/receiving method performed by a user equipment (UE) including a dedicated radio frequency (RF) chain for a proximity service (ProSe). The method may comprise: receiving configuration information for a discovery resource pool, the discovery resource pool including a bitmap representing a subframe used for a discovery signal and information representing the number of times when the bitmap is repeated; turning on the dedicated RF chain based on a subframe corresponding to a first bit 1 in a bit string enumerated by the bitmap and the number of repetition times; turning on the dedicated RF chain and thereafter, transmitting/receiving a signal to/from an adjacent UE; and turning off the dedicated RF chain based on a subframe corresponding to a last bit 1 in the bit string.
Abstract:
The present invention provides a method for performing a measurement by a terminal in a wireless communications system having both a macro cell and a small cell. The method for performing a measurement includes the step of receiving CRS (Cellspecific Reference Signal) support information from the macro cell or the small cell which works as a serving cell. The CRS support information may contain the information of a cell sending a CRS causing interference. The method may include the step of receiving respectively a CRS from the macro and a CRS from the small cell. Here, a timing offset may be adjusted between the sub-frame receiving the CRS from the macro cell and the sub-frame receiving the CRS from the small cell.
Abstract translation:本发明提供一种用于在具有宏小区和小小区的无线通信系统中由终端执行测量的方法。 用于执行测量的方法包括从用作服务小区的宏小区或小小区接收CRS(Cell Specific Specific Signal,支持信息)支持信息的步骤。 CRS支持信息可以包含发送CRS导致干扰的小区的信息。 该方法可以包括分别从宏接收CRS和来自小小区的CRS的步骤。 这里,可以在从宏小区接收CRS的子帧与从小小区接收CRS的子帧之间调整定时偏移。
Abstract:
There is provided a method for determining uplink transmission power. The method may performed by a user equipment (UE) and comprise: receiving, by the UE, a value of additional maximum power reduction (A-MPR) from a base station (BS), if the UE is configured to use for uplink transmission a frequency range of 1980 MHz through 2010 MHz or 1920 MHz through 2010 MHz and if another UE which is located in an adjacent BS and is to be protected uses for an uplink transmission a frequency range of 2010 MHz through 2025 MHz; and determining an uplink transmission power by applying the value of A-MPR.
Abstract:
There is provided a UE in a wireless communication system, the UE comprising: at least one transceiver, at least one processor; and at least one computer memory storing instructions that, based on being executed by the at least one processor, perform operations comprising: receiving a capability enquiry message from a serving cell; transmitting a capability information to the serving cell, based on that the capability enquiry message is received; and transmitting an uplink signal based on first CC within a NR TDD operating band; and receiving a downlink signal based on second CC within NR TDD operating band.
Abstract:
There is provided a method for performing communication. The method performed by a UE and comprising: receiving measurement configuration information from a base station; and performing measurement for the plurality of cells based on the each of the multiple MG patterns, which is configured based on the MG information.
Abstract:
One disclosure of the present specification provides a method by which a UE performs sidelink communication. The method may comprise the steps of: performing sidelink communication on the basis of a first RAT; switching a RAT for the sidelink communication from the first RAT to a second RAT; performing the sidelink communication on the basis of the second RAT; and communicating with a base station on the basis of NR.
Abstract:
One disclosure of the present specification provides a method for performing communication by a user equipment (UE). The method comprises the steps of: receiving a downlink signal from a base station, wherein the downlink signal is received via n263 operation band in FR2-2 (Frequency Range2-2), wherein the UE is a power class 2 UE, wherein the UE satisfies REFSENS (Reference Sensitivity) on a first channel bandwidth, wherein, based on the first channel bandwidth being 100 MHz, the REFSENS is −86.3 dBm, wherein, based on the first channel bandwidth being 400 MHz, the REFSENS is −80.3 dBm, wherein, based on the first channel bandwidth being 800 MHz, the REFSENS is −77.3 dBm, wherein, based on the first channel bandwidth being 1600 MHz, the REFSENS is −74.3 dBm, wherein, based on the first channel bandwidth being 2000 MHz, the REFSENS is −73.3 dBm.
Abstract:
A disclosure of this specification provides a device configured to operate in a wireless system, the device comprising: dual transceiver; a processor operably connectable to the dual transceiver, wherein the processor is configured to: set a configured maximum output power based on a maximum power reduction (MPR) value; determine an uplink transmission power based on the configured maximum output power; and control the dual transceiver to transmit a uplink signal with the uplink transmission power, wherein the device supports power class 1.5, wherein the MPR value is for Inner RB allocations, wherein the MPR value is preconfigured based on modulation type for the uplink signal.
Abstract:
Provided is an electronic device provided with an antenna for 5G communication according to the present invention. The electronic device includes an array antenna which is implemented as a multi-layer substrate inside the electronic device and includes a plurality of antenna elements. Each of the antenna elements of the array antenna comprises: a patch antenna disposed on a specific layer of the multi-layer substrate and configured to radiate a signal applied from a feeder line; a first electronic band gap (EBG) element disposed parallel to the patch antenna on the left or right side of the patch antenna; and a second electronic band gap (EBG) element disposed parallel to the patch antenna on the upper or lower side of the patch antenna.
Abstract:
Provided in one embodiment of the present specification is a method for switching a bandwidth part (BWP) for sidelink communication. The method can comprise the steps of: receiving information about a bandwidth part (BWP) switching timing from a base station; and switching a BWP on the basis of the information about the BWP switching timing. The information about the BWP switching timing can include information about the point of time at which the BWP switching should be started after the information has been received. The information about the BWP switching timing can be received through downlink control information (DCI) or a radio resource control (RRC) signal.