摘要:
The present invention discloses a transistor driving module, coupling to a converting controller, to driving a high side transistor and a low side transistor connected in series, wherein one end of the high side transistor is coupled to an input voltage and one end of the low side transistor is grounded. The transistor driving module comprises a high side driving unit, a low side driving unit, a current limiting unit and an anti-short through unit. The high side driving unit generates a high side driving signal to turn the high side transistor on according to a duty cycle signal, and the low side driving unit generates a low side driving signal turn the low side transistor on according to the high side driving signal. The current limiting unit is coupled to the high side transistor and the high side driving unit, and generates a current limiting signal when a current flowing through the high side transistor higher than a current limiting value. The high side driving unit is stopped to generate the high side driving signal when receiving the current limiting value. The anti-short through unit is coupled to the high side driving unit and the low side driving unit to control the generations of the high side driving signal and the low side driving signal to have the timings of the high side driving signal and the low side driving signal non-overlapped.
摘要:
An LED current control circuit including a current adjusting unit, a detecting unit, and a current control unit is provided. The current adjusting unit has a current control end coupled to an LED string for determining an amount of current flowing through the LED string according to a current control signal. The detecting unit detects the current control end and determines whether to generate a protecting signal according to a protecting voltage value. The current control unit generates the current control signal to control the amount of current flowing through the LED string of and determines whether to stop the current flowing through the LED string according to the protecting signal.
摘要:
The present invention provides an LED driving circuit with temperature compensation, comprising a power transforming circuit, an LED module and a controller. The transforming circuit receives an electrical power from an input power source and transforms it into an output voltage according to a control signal. The LED module is coupled to the transforming circuit. The controller generates the control signal according to an operation temperature and a voltage feedback signal indicative of the output voltage, and makes the output voltage decrease with increasing operation temperature. Therefore, the LED driving circuit of the present invention has an effect of temperature compensation that compensates the influence of the decreased driving voltage of the LED module due to temperature.
摘要:
The present invention provides a full-bridge driving controller and a full-bridge converting circuit, which have the function of soft switch, to provide a DC output voltage. The present invention employs a resonant unit to oscillate the current flowing through the converting circuit at a resonant frequency. The full-bridge driving controller switches four full-bridge transistor switches at an operating frequency higher than the resonant frequency, so as to achieve the function of soft switch.
摘要:
A controller with protection function, for controlling a transistor having a control terminal, a first terminal coupled to a load, a second terminal, is disclosed. The controller comprises a judgment unit and a current control unit. The judgment unit is coupled to the transistor and generates a current reducing signal when a potential of the first terminal of the transistor or a voltage difference between the first terminal and the second terminal of the transistor is higher than a preset value. The current control unit is coupled to the control terminal of the transistor for substantially stabilizing the current flowing through the transistor at a preset current value, and reduces the current flowing from the preset current value when receiving the current reducing signal.
摘要:
The resonant converting circuit comprises a resonant circuit, a current detecting circuit and the resonant controller. The resonant controller controls a power conversion of the resonant circuit for converting an input voltage into an output voltage and the resonant controller comprises an over current judgment unit and an over current protection unit. The over current judgment unit determines whether the resonant current is higher than an over current value according to a current detecting signal generated by the current detecting circuit. The over current protection unit generates a protection signal in response to a determined result of the over current judgment unit and an indication signal indicative of an operating state of the resonant controller. The resonant controller executes a corresponding protecting process in response to the protection signal.
摘要:
An LED driving circuit comprises a converting circuit, a current regulator, a converting controller and a low dimming protection blocking circuit, is disclosed. The converting circuit is adapted to perform a power conversion to provide a driving voltage for lighting an LED module. The current regulator is coupled to the LED module for regulating a current flowing through the LED module. The current regulator conducts and stops conducting the current flowing through the LED module according to a dimming signal, and executes a protection process when the LED module operates abnormal. The converting controller controls the power conversion of the converting circuit according to a voltage level of at least one connection node of the current regulator and the LED module. The low dimming protection blocking circuit stops the protection process of the current regulator when the driving voltage is lower than a predetermined value.
摘要:
The present invention provides a feedback control circuit and an LED driving circuit for using the same, wherein the feedback control circuit receives a dimming signal. The dimming signal is changed between a first state and a second state. When being in the first state, the feedback control circuit controls a converter circuit to drive the LED module for lighting stably. When being in the second state, the feedback control circuit controls the converter circuit to maintain the power conversion of the converter circuit to have an output voltage outputted by the converter circuit maintained at a level close to a lighting threshold voltage of the LED module.
摘要:
An LED driving circuit comprises a converting circuit, a current regulator, a converting controller and a low dimming protection blocking circuit, is disclosed. The converting circuit is adapted to perform a power conversion to provide a driving voltage for lighting an LED module. The current regulator is coupled to the LED module for regulating a current flowing through the LED module. The current regulator conducts and stops conducting the current flowing through the LED module according to a dimming signal, and executes a protection process when the LED module operates abnormal. The converting controller controls the power conversion of the converting circuit according to a voltage level of at least one connection node of the current regulator and the LED module. The low dimming protection blocking circuit stops the protection process of the current regulator when the driving voltage is lower than a predetermined value.
摘要:
A current detecting circuit detects a resonant current in a primary side of a resonant converting circuit to generate a current detecting signal. An output detecting circuit generates a feedback signal according to the output voltage. A resonant controller generates a clock signal and adjusts an operating frequency of the clock signal in response to the feedback signal for modulating the output voltage of the resonant circuit. The resonant controller includes a resonance deviation protection unit which detects the current detecting signal according to a phase of the clock signal to determine whether the resonant circuit enters a region of zero current switching or not. When the resonant circuit enters the region of zero current switching, the resonant controller executes a corresponding protection process in response to that the resonant controller operates in a starting mode or a normal operating mode.