Abstract:
A vehicle such as an autonomous or self-driving vehicle has a navigation system for displaying, on a display screen, a user interface presenting a map showing multiple routes. The vehicle includes a traffic-prioritization processor configured to cooperate with the navigation system to present prices and travel times for the multiple routes via the user interface to enable a user of the vehicle to select one of the multiple routes based on both the prices and the travel times displayed on the display screen. The vehicle further includes a radiofrequency data transceiver configured to cooperate with the traffic-prioritization processor to communicate with one or more other vehicles or a central server to negotiate a traffic reprioritization for a user-selected route.
Abstract:
A self-driving or autonomous vehicle has a traffic-prioritization processor to send or receive a payment to or from a central server to obtain a traffic prioritization for a route or to accept a traffic de-prioritization for the route. The central server receives and distributes payments to other vehicles traveling the route. The vehicle communicates with the central server to receive a plurality of levels of prioritization which range from a highest prioritization to a lowest prioritization, and the costs or payouts associated with each of the levels.
Abstract:
A vehicle self-driving vehicle system comprises a self-driving vehicle and a remotely situated vehicle control device in data communication with vehicle and operable by a user situated outside of the vehicle. The vehicle comprises sensors and a processor configured to generate steering, acceleration and braking control signals. The vehicle has a GNSS receiver for determining a location of vehicle, a radiofrequency data transceiver, and a first-person view (FPV) camera for generating FPV images transmitted to the remotely situated vehicle control device. The processor is further configured to receive supplemental vehicle control input from the remotely situated vehicle control device, and wherein the processor is further configured to modify the steering, acceleration and braking control signals based on the supplemental vehicle control input. The remotely situated vehicle control device displays FPV images and receives the supplemental vehicle control input, and transmits the supplemental vehicle control input data to the self-driving vehicle.
Abstract:
An automotive vehicle comprising a cabin having a windshield, a tablet holder pivotally connected to an interior surface of the cabin, the tablet holder being pivotable between a stowed position and a deployed position, and a tablet detachably mounted to the tablet holder. In one embodiment, the tablet is a transparent tablet that may be configured to dynamically shade its display screen to attenuate incoming light.
Abstract:
A method, apparatus, and computer program product for graphically presenting compatible workflow steps to a user through a graphical user interface are disclosed. The method includes graphically displaying a plurality of steps in a workflow. A user's selection for at least one step in a plurality of steps to denote at least one selected step and at least one non-selected step is received. The method further includes determining if a set of one or more output parameters of the selected step is acceptable as an input of the non-selected step. An appearance of the non-selected step is graphically changed if the output parameters are acceptable. The method also includes determining if a set of one or more output parameters of the non-selected step is acceptable as an input of the selected step. An appearance of the non-selected step is graphically changed if the output parameters are acceptable.
Abstract:
The identity of the sender of an e-mail message is verified by performing a plurality of tests on DNS information. The DNS information is based on a client IP address or a sender address. Each test performed has a corresponding intrinsic confidence value representing the degree of confidence the test provides of the sender identity relationship. If multiple tests are successful the test result with the highest confidence value of the hierarchy of confidence values is used. The confidence value is optionally used in subsequent identity tests as specified by the subsequent test.