Abstract:
In some examples, an implantable medical device determines that another medical device delivered an anti-tachyarrhythmia shock, and delivers post-shock pacing in response to the determination. The implantable medical device may be configured to both detect the delivery of the shock in a sensed electrical signal and, if delivery of the shock is not detected, determine that the shock was delivered based on detection of asystole of the heart. The asystole may be detected based on the sensed electrical signal. In some examples, an implantable medical device is configured to revert from a post-shock pacing mode to a baseline pacing mode by iteratively testing a plurality of decreasing values of pacing pulse magnitude until loss of capture is detected. The implantable medical device may update a baseline value of the pacing pulse magnitude for the baseline mode based on the detection of loss of capture.
Abstract:
An implantable medical device comprises a communication module that comprises at least one of a receiver module and a transmitter module. The receiver module is configured to both receive from an antenna and demodulate an RF telemetry signal, and receive from a plurality of electrodes and demodulate a tissue conduction communication (TCC) signal. The transmitter module is configured to modulate and transmit both an RF telemetry signal via the antenna and a TCC signal via the plurality of electrodes. The RF telemetry signal and the TCC signal are both within a predetermined band for RF telemetry communication. In some examples, the IMD comprises a switching module configured to selectively couple one of the plurality of electrodes and the antenna to the receiver module or transmitter module.
Abstract:
In situations in which an implantable medical device (IMD) (e.g., an extravascular ICD) is co-implanted with a leadless pacing device (LPD), it may be important that the IMD knows when the LPD is delivering pacing, such as anti-tachycardia pacing (ATP). Techniques are described herein for detecting, with the IMD and based on the sensed electrical signal, pacing pulses and adjusting operation to account for the detected pulses, e.g., blanking the sensed electrical signal or modifying a tachyarrhythmia detection algorithm. In one example, the IMD includes a pace pulse detector that detects, based on the processing of sensed electrical signals, delivery of a pacing pulse from a second implantable medical device and blank, based on the detection of the pacing pulse, the sensed electrical signal to remove the pacing pulse from the sensed electrical signal.
Abstract:
Implantable medical systems enter an exposure mode of operation, either manually via a down linked programming instruction or by automatic detection by the implantable system of exposure to a magnetic disturbance. A controller then determines the appropriate exposure mode by considering various pieces of information including the device type including whether the device has defibrillation capability, pre-exposure mode of therapy including which chambers have been paced, and pre-exposure cardiac activity that is either intrinsic or paced rates. Additional considerations may include determining whether a sensed rate during the exposure mode is physiologic or artificially produced by the magnetic disturbance. When the sensed rate is physiologic, then the controller uses the sensed rate to trigger pacing and otherwise uses asynchronous pacing at a fixed rate.
Abstract:
The present invention provides an implantable medical device having at least two electrodes coupled to the device housing. The electrodes may be configured for sensing physiological signals such as cardiac signals and alternatively for providing an electrical stimulation therapy such as a pacing or defibrillation therapy. In accordance with aspects of the disclosure, the device housing provides a hermetic enclosure that includes a first housing section that is hermetically coupled to a second housing section. At least one of the at least two electrodes is coupled to an exterior surface of the first housing section that encloses the battery components of the device. The first housing section is electrically insulated from the cathode and anode of the battery.
Abstract:
The present invention provides an implantable medical device having at least two electrodes coupled to the device housing. The electrodes may be configured for sensing physiological signals such as cardiac signals and alternatively for providing an electrical stimulation therapy such as a pacing or defibrillation therapy. In accordance with aspects of the disclosure, the device housing provides a hermetic enclosure that includes a battery case hermetically coupled to a circuit assembly case. At least one of the at least two electrodes is coupled to an exterior surface of the battery case. The battery case is electrically insulated from the cathode and anode of the battery.
Abstract:
A method of generating at least one recommended replacement time signal for a battery is provided. The method includes measuring a plurality of associated unloaded and loaded battery voltages. A delta voltage for each associated unloaded and loaded battery voltage is then determined. A select number of delta voltages are averaged. A minimum delta voltage is determined from a plurality of the averaged delta voltages. At least one recommended replacement time signal for the battery is generated with the use of the minimum delta voltage when at least one averaged delta voltage is detected that has at least reached a replacement threshold.
Abstract:
Techniques are disclosed for generating a plurality of output voltages from a single input power source. The techniques include implementing a switched capacitor voltage converter to provide at least two output voltages having different supply ratios. The supply ratio is defined as a function of the input voltage provided to the switched capacitor voltage converter by the power source. The switched capacitor voltage converter includes a plurality of capacitors selectively coupled to a plurality of switches to define at least a first and a second mode with each of the modes having a plurality of configurations. In accordance with aspects of the disclosure, the techniques include coupling the plurality of capacitors to define the first or second mode based on predetermined criteria.
Abstract:
Systems, devices, and techniques for establishing communication between two medical devices are described. In one example, an implantable medical device comprises communication circuitry, therapy delivery circuitry, and processing circuitry configured to initiate a communication window during which the implantable second medical device is capable of receiving the information related to a cardiac event detected by a first medical device, the communication window being one of a plurality of communication windows defined by a communication schedule that corresponds to a transmission schedule in which the first medical device is configured to transmit the information, control the communication circuitry to receive, from the first medical device, the information related to the cardiac event that is indicative of a timing of the cardiac event with respect to a timing of the communication window, schedule and control delivery of a therapy according to the information related to the cardiac event.
Abstract:
Techniques for facilitating communication between an implantable medical device and an external device are provided. In one example, a method comprises broadcasting, via communication circuitry of an implantable device, a first set of advertisements at a first advertising rate according to a communication protocol. The method further comprises determining that detection circuitry of the implantable device detected voltage induced by an electromagnetic field at an interface between tissue of a patient and electrodes of the implantable device and in response to the detection of voltage induced by the electromagnetic field, broadcasting, via the communication circuitry, a second set of advertisements at a second advertising rate according to the communication protocol. The second advertising rate is greater than the first advertising rate.