Abstract:
A process and apparatus for performing catalytic reactions with intensive heat of reaction in which a reaction mixture is conducted through a catalyst bed, from which the reaction heat is removed or to which it is fed by indirect heat exchange with a heat exchange medium. The catalyst bed adjoins at least one bed of a catalytically inert material, which also is in indirect heat exchange with the heat exchange medium.
Abstract:
A process and apparatus for conducting a catalytic reaction of H.sub.2 S and SO.sub.2 to elementary sulfur provides for at least two catalyst beds and that at least one part of one of the catalyst beds is operated during the reaction at below the sulfur dew point, preferably below the solids condensation point, and above the water dew point. The adsorbed and deposited sulfur is removed by heating and evaporation. At least two serially connected and interchangeable reactors are employed in preferably a single flow direction in one cycle, and the flow direction of the gas stream is reversed in a second cycle by means of a multiway fitting.
Abstract:
In a process for the separation of at least carbon dioxide and hydrogen sulfide from a raw gaseous mixture to form a purified gaseous mixture comprising passing said gas through a sour gas removal system including the steps of scrubbing said gaseous mixture with a liquid scrubbing agent having a higher affinity for hydrogen sulfide than for carbon dioxide, removing from said system an off-gas enriched in hydrogen sulfide, and passing said off-gas to a sulfur recovery system comprising the conversion of sulfur values to elemental sulfur and the recovery of a tail gas containing hydrogen sulfide and sulfur dioxide,the improvement which comprises hydrogenating said tail gas to convert sulfur dioxide to hydrogen sulfide and recycling resultant hydrogenated tail gas to said sour gas removal system, whereby essentially no hydrogen sulfide or sulfur dioxide is discharged into the environment.