Abstract:
The present invention is directed to systems and methods for radiating radar signals, communication signals, or other similar signals. In one embodiment, a system includes a controller that generates a control signal and an antenna coupled to the controller. The antenna includes a first component that generates at least one wave based on the generated control signal and a metamaterial lens positioned at some predefined focal length from the first component. The metamaterial lens directs the generated at least one wave.
Abstract:
A method for producing stable atmospheric pressure glow discharge plasmas using RF excitation and the use of said plasmas for modifying the surface layer of materials. The plasma generated by this process and its surface modification capability depend on the type of gases used and their chemical reactivity. These plasmas can be used for a variety of applications, including etching of organic material from the surface layer of inorganic substrates, as an environmentally benign alternative to industrial cleaning operations which currently employ solvents and degreasers, as a method of stripping paint from surfaces, for the surface modification of composites prior to adhesive bonding operations, for use as a localized etcher of electronic boards and assemblies and in microelectronic fabrication, and for the sterilization of tools used in medical applications.
Abstract:
A method for producing stable atmospheric pressure glow discharge plasmas using RF excitation and the use of said plasmas for modifying the surface layer of materials. The plasma generated by this process and its surface modification capability depend on the type of gases used and their chemical reactivity. These plasmas can be used for a variety of applications, including etching of organic material from the surface layer of inorganic substrates, as an environmentally benign alternative to industrial cleaning operations which currently employ solvents and degreasers, as a method of stripping paint from surfaces, for the surface modification of composites prior to adhesive bonding operations, for use as a localized etcher of electronic boards and assemblies and in microelectronic fabrication, and for the sterilization of tools used in medical applications.
Abstract:
The subject invention is a method of sputtering a material on a substrate in which the substrate is first locally heated so that the mobility on the surface of the substrate is increased to a value E.sub.s. A material is then sputtered on the substrate with a sputtering energy E.sub.k whereby the sum of E.sub.k and E.sub.s is greater than the activation energy required for a chemical reaction to occur between the sputtered surface of the substrate and the sputtered material. In the preferred embodiment, the substrate is silicon and the material to be sputtered is a refractory metal such as titanium.
Abstract:
A photon sensing and amplification device including a photocathode, a transparent electrode opposed from the photocathode, and a plasma chamber positioned between the photocathode and the transparent electrode, wherein the plasma chamber houses an ionizable gas.
Abstract:
A method and apparatus for a negative index metamaterial lens. The method is used for creating a negative index metamaterial lens for use with a phased array antenna. A design is created for the negative index materials lens that is capable of bending a beam generated by the phased array antenna to around 90 degrees from a vertical orientation to form an initial design. The initial design is modified to include discrete components to form a discrete design. Materials are selected for the discrete components. Negative index metamaterial unit cells are designed for the discrete components to form designed negative index metamaterial unit cells. The designed negative index metamaterial unit cells are fabricated to form fabricated designed negative index metamaterial unit cells. The negative index metamaterial lens is formed from the designed negative index metamaterial unit cells.
Abstract:
A vehicle including a body and three legs. Each leg includes a proximal end coupled to the body, a distal end opposite the proximal end, and an actuator. Each actuator imparts enough acceleration to the vehicle along an axis of the leg to cause the distal end of the leg to leave a surface upon which it rests. Thus, the robot can pivot around one leg when the actuator of another leg imparts an acceleration. One actuator may also cause two legs to leave the surface. Moreover, the actuators may be spring biased into a retracted position. Further, the body may be a Platonic solid and the axes of the lags may pass through the vehicle's center of gravity. Of course, the body could be a sphere while the vehicle could be a planetary robot or a toy. Methods of traversing a surface are also provided.
Abstract:
A system to detect and identify various aerosol agents, such as biological agents which have been aerosolized, is disclosed. The system generally includes a mechanism to collect a selected sample of atmosphere which may include the aerosol agent, a sub-system to detect the presence and type of agent, and a sub-system to communicate the type of agent detected.
Abstract:
A vehicle including a body and three legs. Each leg includes a proximal end coupled to the body, a distal end opposite the proximal end, and an actuator. Each actuator imparts enough acceleration to the vehicle along an axis of the leg to cause the distal end of the leg to leave a surface upon which it rests. Thus, the robot can pivot around one leg when the actuator of another leg imparts an acceleration. One actuator may also cause two legs to leave the surface. Moreover, the actuators may be spring biased into a retracted position. Further, the body may be a Platonic solid and the axes of the lags may pass through the vehicle's center of gravity. Of course, the body could be a sphere while the vehicle could be a planetary robot or a toy. Methods of traversing a surface are also provided.
Abstract:
Electrostatic levitation and positioning of a charged, spherical micro-lens to steer an optical beam from a transmit fiber to a receive lens/fiber pair. Bundled arrays of N fibers and lenses provide a switch having a switch count that scales linearly in the port count N.