摘要:
A partition is formed by the process including a step for providing a sheet-like partition material that covers a display area and outside thereof on the surface of the substrate, a step for providing a mask for patterning that covers the display area and the outside thereof, so that a pattern of the portion arranged outside of the display area of the mask is a grid-like pattern, a step for patterning the partition material covered partially with the mask by a sandblasting process, and a step for baking the partition material after the patterning.
摘要:
A partition is formed by the process including a step for providing a sheet-like partition material that covers a display area and outside thereof on the surface of the substrate, a step for providing a mask for patterning that covers the display area and the outside thereof, so that a pattern of the portion arranged outside of the display area of the mask is a grid-like pattern, a step for patterning the partition material covered partially with the mask by a sandblasting process, and a step for baking the partition material after the patterning.
摘要:
The present invention provides a highly reliable technology for manufacturing a substrate with protrusions. After filling an UV-curable transfer material into the grooves of an intaglio plate for transfer, the UV-curable transfer material is cured by irradiating UV rays under the conditions where it is exposed to an atmosphere that contains at least one of oxygen and ozone while a curing-inhibited portion is formed in an area of the UV-curable transfer material exposed to this atmosphere, and the UV-curable transfer material is transferred to the substrate to form the protrusions, while the curing-inhibited portion is made to adhere to the substrate.
摘要:
A plasma display panel for easy fabrication is provided with an improved black stripe structure. The structure eliminates the black stripes on a front substrate, leading to more freedom in material selection without suffering from the known problem of tarnishing of component members. Further, non-discharge spaces are provided in barrier ribs formed on a rear substrate and black material layers functioning as the black stripes are formed in cavities corresponding to the non-discharge spaces. Thus, this structure serves to form the black material layers in a sequential process which is similar to that for forming phosphor layers, thereby allowing the plasma display panel to have excellent contrast without complicating the structure and the fabrication process thereof.
摘要:
A method of preparing a barrier rib master pattern for barrier rib transfer, which includes the steps of forming a photosensitive material layer on a substrate performing oblique exposure by projecting exposure light onto the photosensitive material layer with the intervention of a photomask obliquely with respect to the substrate, and developing the photosensitive material layer, whereby a rib pattern having tapered side walls is formed on the substrate.
摘要:
A method for manufacturing a metallic ornamental plate is provided comprising the steps of press-forming a light metal plate to provide a first planar region having a first surface, and a second planar region having a second surface elevated from the first surface; and machine-finishing the elevated second surface of the second planar region to define a distinct ornamental pattern against the first surface wherein the machine-finishing step removes material from the elevated second surface.
摘要:
A variable distributed constant line includes a substrate, a signal line that is provided on the substrate, and includes a first line portion and a second line portion facing each other, a movable electrode that is provided above the substrate, and straddles both the first line portion and the second line portion in a manner to face the first line portion and the second line portion, and a driving electrode that is provided on the substrate in a manner to face the movable electrode, attracts the movable electrode by an action of a voltage applied between the driving electrode and the movable electrode, and changes a distance between the signal line and the movable electrode.
摘要:
A MEMS device includes a substrate, a fixed electrode that is provided on the substrate and allows a signal to pass therethrough, a movable electrode that is provided above the substrate in a manner to face the fixed electrode and allows a signal to pass therethrough, a driving line that is provided inside the substrate and used to apply a driving voltage to displace the movable electrode, and a resistance that is provided in a first via hole formed inside the substrate and used to cutoff a signal. The fixed electrode or the movable electrode is connected to the driving line through the first resistance.
摘要:
In a conventional method of driving a plasma display panel, for example, an auxiliary discharge is executed between an A electrode and a Y electrode to improve light-emission efficiency of a display discharge. However, since a phosphor layer is present between the A electrode and the Y electrode, the phosphor layer is exposed to a discharge, whereby there is a problem that its characteristic deteriorates. A method of driving a plasma display panel having a structure, in which at least three display electrodes X, Y, and Z used for a display discharge are provided to a display cell and no phosphor layer is formed between said display electrodes and a discharge space, the method comprising the steps of: varying a potential of at least one display electrode Z of said display electrodes during said display discharge; and making a potential of said at least one display electrode Z at a time of starting said display discharge different from that at a time of ending said display discharge.
摘要:
A filter includes a first resonance line and a second resonance line which extend from an input point where a high frequency signal is input, wherein an electrical propagation length L1 of the first resonance line is set at L1=[λ1/4]×n and an electrical propagation length L2 of the second resonance line is set at L2=[λ2/4]×n, wherein λ1 and λ2 are wavelengths of specified high frequency signals and n is positive odd number.