Variable Wavelength Filter
    21.
    发明申请

    公开(公告)号:US20210141153A1

    公开(公告)日:2021-05-13

    申请号:US16970270

    申请日:2019-03-04

    Abstract: Provided is a variable wavelength filter having a wide variable wavelength range. In the variable wavelength filter, a slab waveguide that is a component of an arrayed-waveguide grating has a groove into which a resin is inserted. The groove intersects with a plurality of line segments A joining a place of connection between an input light waveguide and the slab waveguide to places of connection between respective array waveguides and the slab waveguide. The groove is formed such that a total length LA of an intersection of the groove and each of the line segments A monotonously increases or decreases between the adjacent line segments A with a difference in the total length LA between the adjacent line segments A being constant.

    Optical signal processing apparatus

    公开(公告)号:US12007665B2

    公开(公告)日:2024-06-11

    申请号:US17419489

    申请日:2020-01-07

    Abstract: To provide an optical signal processing device capable of reducing the crosstalk while narrowing the space between switch elements for downsizing, the optical signal processing device includes a plurality of input optical waveguides, a plurality of output optical waveguides, a plurality of optical waveguide elements arranged between the plurality of input optical waveguides and the plurality of output optical waveguides, and a connection optical waveguide. The connection optical waveguide positioned closely to the optical waveguide element is differentiated in propagation constant from the optical waveguide configuring the closely arranged optical waveguide element. The connection optical waveguide positioned closely to the optical waveguide element is a connection optical waveguide having one end or both ends connected to the optical waveguide element, or a connection optical waveguide having both ends not connected to the optical waveguide elements.

    Optical Waveguide
    25.
    发明申请

    公开(公告)号:US20230032684A1

    公开(公告)日:2023-02-02

    申请号:US17782799

    申请日:2019-12-11

    Abstract: In a waveguide having a given Δ, a low-loss waveguide bend is realized while the curvature radius is kept small. In an optical waveguide in which a first waveguide and a second waveguide are connected, a clothoid tapered waveguide bend is inserted between the first waveguide and the second waveguide. In the clothoid tapered waveguide bend, the waveguide width continuously changes from a first waveguide width at a connection point of the first waveguide to a second waveguide width at a connection point of the second waveguide, the curvature radius continuously changes from a first curvature radius at the connection point of the first waveguide to a second curvature radius at the connection point of the second waveguide, the first waveguide width and the second waveguide width are different from each other, and the first curvature radius and the second curvature radius are different from each other.

    Optical signal processing device and method for controlling same

    公开(公告)号:US11405702B2

    公开(公告)日:2022-08-02

    申请号:US17253449

    申请日:2019-06-19

    Abstract: An optical signal processing device is described herein for reducing electric wirings in an optical switch or an optical filter realized using an optical waveguide. The optical signal processing device includes an optical waveguide formed on a substrate. In the optical signal processing device, the optical waveguide includes at least one input port and at least one output port, a plurality of driven elements are provided including a phase shifter that produces a phase shift to an optical signal from the input port, each of the driven elements includes at least two control terminals, control wirings are provided to have control signals being time-division synchronized applied between the two control terminals, and the control wiring for accessing the driven element is shared by the plurality of driven elements.

    Planar Optical Waveguide Circuit
    27.
    发明申请

    公开(公告)号:US20220091329A1

    公开(公告)日:2022-03-24

    申请号:US17420371

    申请日:2020-01-08

    Abstract: The invention provides a planar optical waveguide circuit capable of preventing part of the input signal light that has not been combined in the waveguide and propagates as leaked light from interfering with the output signal. A planar optical waveguide circuit having an optical waveguide embedded in a cladding layer includes: a plurality of parallel output optical waveguides configured to emit light from a same end face; a groove having a reflective interface formed at an angle of +45 degrees relative to the output optical waveguides and configured to reflect leaked light propagating in the cladding layer; and a groove having a reflective interface formed at an angle of −45 degrees, the reflective interface formed at an angle of +45 degrees, the output optical waveguide, and the reflective interface formed at −45 degrees being arranged repeatedly in that order.

    Optical Signal Processing Device
    29.
    发明申请

    公开(公告)号:US20210026220A1

    公开(公告)日:2021-01-28

    申请号:US16965090

    申请日:2019-02-20

    Abstract: There is provided an optical signal processing device capable of RC in a complex space using optical intensity and phase information. An optical modulator controlled by an electric signal processing circuit modulates laser light, which is emitted from a laser light source, at a modulation period either or both of the intensity and phase values of the optical electric field. On the other hand, an input signal is also modulated by the optical modulator at a modulation period in the time domain so as to be an input signal. The converted input signal passes through an optical transmission path and enters an optical circulation circuit via an optical coupler. Part of the circulating light is branched into two by an optical coupler, and the branched light is converted into a complex intermediate signal at a coherent optical receiver. This complex intermediate signal demodulated at the coherent optical receiver is computed at an electric signal processing circuit, and thereby the operation as RC can be performed.

Patent Agency Ranking