Optical waveguide
    1.
    发明授权

    公开(公告)号:US12092870B2

    公开(公告)日:2024-09-17

    申请号:US17782799

    申请日:2019-12-11

    Abstract: In a waveguide having a given Δ, a low-loss waveguide bend is realized while the curvature radius is kept small. In an optical waveguide in which a first waveguide and a second waveguide are connected, a clothoid tapered waveguide bend is inserted between the first waveguide and the second waveguide. In the clothoid tapered waveguide bend, the waveguide width continuously changes from a first waveguide width at a connection point of the first waveguide to a second waveguide width at a connection point of the second waveguide, the curvature radius continuously changes from a first curvature radius at the connection point of the first waveguide to a second curvature radius at the connection point of the second waveguide, the first waveguide width and the second waveguide width are different from each other, and the first curvature radius and the second curvature radius are different from each other.

    Variable wavelength filter
    3.
    发明授权

    公开(公告)号:US11112561B2

    公开(公告)日:2021-09-07

    申请号:US16970270

    申请日:2019-03-04

    Abstract: Provided is a variable wavelength filter having a wide variable wavelength range. In the variable wavelength filter, a slab waveguide that is a component of an arrayed-waveguide grating has a groove into which a resin is inserted. The groove intersects with a plurality of line segments A joining a place of connection between an input light waveguide and the slab waveguide to places of connection between respective array waveguides and the slab waveguide. The groove is formed such that a total length LA of an intersection of the groove and each of the line segments A monotonously increases or decreases between the adjacent line segments A with a difference in the total length LA between the adjacent line segments A being constant.

    Optical module
    5.
    发明授权

    公开(公告)号:US11977315B2

    公开(公告)日:2024-05-07

    申请号:US17297817

    申请日:2019-12-11

    CPC classification number: G02F1/3136 H01R12/71 H01R13/24 G02F2201/12

    Abstract: The positions at which electrode pads are arranged can be made more flexible, and electrical interconnects to be installed can be reduced. In addition, the degree of integration of a chip increases, making it possible to realize a large-scale device (optical switch etc.). In an optical module of the present invention, an interposer (an electrical connection intermediary component with electrode pins attached onto upper and lower faces in an array) is laid over a chip that includes a device configured by using a planar lightwave circuit (PLC) fixed onto a fixing metal plate, and a control substrate for driving the device is laid over the interposer. These components are mechanically fixed by a fixing screw or the like, and the electrode pads of the chip and the control substrate are connected to each other via the interposer.

    Optical signal processing device
    6.
    发明授权

    公开(公告)号:US11822206B2

    公开(公告)日:2023-11-21

    申请号:US16965090

    申请日:2019-02-20

    CPC classification number: G02F1/35 G06E3/00

    Abstract: There is provided an optical signal processing device capable of RC in a complex space using optical intensity and phase information. An optical modulator controlled by an electric signal processing circuit modulates laser light, which is emitted from a laser light source, at a modulation period either or both of the intensity and phase values of the optical electric field. On the other hand, an input signal is also modulated by the optical modulator at a modulation period in the time domain so as to be an input signal. The converted input signal passes through an optical transmission path and enters an optical circulation circuit via an optical coupler. Part of the circulating light is branched into two by an optical coupler, and the branched light is converted into a complex intermediate signal at a coherent optical receiver. This complex intermediate signal demodulated at the coherent optical receiver is computed at an electric signal processing circuit, and thereby the operation as RC can be performed.

    Optical Signal Processing Apparatus

    公开(公告)号:US20220091473A1

    公开(公告)日:2022-03-24

    申请号:US17419489

    申请日:2020-01-07

    Abstract: To provide an optical signal processing device capable of reducing the crosstalk while narrowing the space between switch elements for downsizing, the optical signal processing device includes a plurality of input optical waveguides, a plurality of output optical waveguides, a plurality of optical waveguide elements arranged between the plurality of input optical waveguides and the plurality of output optical waveguides, and a connection optical waveguide. The connection optical waveguide positioned closely to the optical waveguide element is differentiated in propagation constant from the optical waveguide configuring the closely arranged optical waveguide element. The connection optical waveguide positioned closely to the optical waveguide element is a connection optical waveguide having one end or both ends connected to the optical waveguide element, or a connection optical waveguide having both ends not connected to the optical waveguide elements.

    Optical switch array and multicast switch

    公开(公告)号:US11194093B2

    公开(公告)日:2021-12-07

    申请号:US16968508

    申请日:2019-03-04

    Abstract: In an optical switch array on which optical switches that require individual electric wires are integrated, the present invention provides an optical switch array and a multi-cast switch in which the electric wires are shortened by optimizing the arrangement of the optical circuit portion. In the optical switch array in which three arrays of 1×4 switch circuits are disposed in parallel, the position where each optical switch is disposed is sequentially shifted by Dy in the y axis direction. That is, in the case where an adjacent 1×4 optical switch circuit exists on both sides, the 1×4 optical switch located there between is located at the center of the two 1×4 optical switch circuits, which are adjacent in the y axis direction. Each of the three 1×4 optical switch circuits that are arrayed are disposed at a position shifted from the adjacent 1×4 optical switch circuit by Dy in the y axis direction, in accordance with the positional coordinate in the x axis direction, and the electric wires at the ground side are shared such that each optical switch circuit is located sequentially shifted by Dy in the −y axis direction.

Patent Agency Ranking