Abstract:
The disclosure relates to subframe bundling in a system where subframe bundling is based on a set of bundling definitions. Control information is provided for at least one communication device configured to provide subframe bundling such that the control information is generated to be at least partially inconsistent with the set of bundling definitions. The control information is signaled to the at least one communication device to adjust the state of subframe bundling and/or size of subframe bundled transmission in accordance with a predefined rule by the at least one communication device. When the device receives the information, is determines that received control information is inconsistent with the set of bundling definitions. In response to the determination, the device can adjust the state of subframe bundling and/or size of subframe bundled transmission.
Abstract:
A method includes receiving at least one reference signal from a first cell in a less active state and at least one reference signal from a second cell in a less active state within a same or different sub frames of a set of sub frames, wherein said at least one reference signal from the first base station is associated with different resource elements of said set of sub frames to those associated with the at least one reference signal from the second cell.
Abstract:
A method comprises receiving in a first subframe of a burst from a base station a downlink transport block for which an acknowledgement is required. A first uplink channel in which an acknowledgement of said transport block to be provided is prepared. The first uplink channel is independent of transmission information. The first prepared uplink channel is transmitted with the acknowledgement in a later burst.
Abstract:
Various communication systems may benefit from improved uplink data transmission. A method may include determining an assignment, at a user equipment, of a first set of physical resource blocks in an unlicensed spectrum to a physical random access channel. The physical random access channel occupies at least one of the physical resource blocks, and wherein the at least one of the physical resource blocks occupied by the physical random channel are distributed into clusters in a frequency domain. The method may also include determining an assignment, when the user equipment transmits data, of a second set of at least one remaining physical resource block of the physical resource blocks to at least one uplink channel. In addition, the method can include transmitting random access preambles through the physical radio access channel or data through of the at least one the uplink channel from the user equipment to a network entity.
Abstract:
Various communication systems may benefit from appropriate scheduling and distribution of control systems. For example, wireless communication systems may benefit from usage of a physical uplink control channel for quasi-periodic control signals. A method can include configuring a quasi-periodic signal resource for a user equipment. The method can also include communicating with the user equipment in accordance with the configured quasi-periodic signal resource.
Abstract:
There is provided a method comprising determining, at a first access point, whether a carrier from a plurality of carriers is a primary listen-before-talk carrier or a secondary listen-before-talk carrier and providing information using the carrier, said information comprising an indication of whether the respective carrier is a primary listen-before-talk carrier or a secondary listen-before-talk carrier.
Abstract:
A method comprising including receiving at a user equipment first power information for transmitting to a first base station, receiving at the user equipment second power information for transmitting to a second base station, causing said user equipment to transmit to said first base station with a first power less than or equal to a first maximum power dependent on said first power information and causing said user equipment to transmit to said second base station with a second power less than or equal to a second maximum power dependent on said second power information, such that said first and second power does not exceed a total power allowed for said user equipment
Abstract:
Apparatuses and methods for communication are provided. The solution includes receiving a message from a base station a user terminal is connected to. The message instructs the user terminal to search from a control channel transmitted by the base station an indicator. If the indicator is found, the user terminal operates according to a configuration where given downlink subframes are suspended. If the indicator is not found, the user terminal continues searching and assumes no change in downlink subframe transmission.
Abstract:
An apparatus, method and computer program product for supporting dynamic multipoint communication configuration stations include defining at least two different communication transmission sets for cellular-based communication between base station and terminal, wherein the communication transmission sets are related to a downlink reference signal configuration; and assigning a communication transmission set for use in a current transmission related to the cellular-based communication.