Abstract:
A method of removing a liquid from a container (1) for accommodating an ophthalmic contact lens, in particular a soft contact lens, during transporting the container (1) from a liquid bath (13) to a subsequent processing station (14), the method including the steps of: transporting the container (1) from the liquid bath to the subsequent processing station, generating suction (20), and applying the suction (20) to a bottom (11) of the container (1) during the step of transporting the container (1) from the liquid bath to the subsequent processing station, thereby removing the liquid from the container (1).
Abstract:
A manufacturing module (MM) for contact lenses comprises a plurality of manufacturing stations (300, 301, 302, 310, 320, 321, 322, 330, 331, 340, 341, 342, 350, 351, 352) arranged in a closed loop and a plurality of lens mold carriers (1, 2) which are transported through the manufacturing stations. Each lens mold carrier (1, 2) comprises a frame (10, 20) having a predetermined number of mounting sites (100, 200) arranged along the frame. Each lens mold carrier (1, 2) further comprises a predetermined number of molds (112, 212) removably mounted to the frame (10, 20) at the mounting sites (100, 200), the molds being reusable male or female molds (212, 112). Two lens mold carriers (1, 2) are assigned to each other to form a pair, so that upon mating the pair of lens mold carriers (1, 2) the male and female molds (212, 112) are mated to form mold cavities defining the shape of the lenses. The manufacturing stations comprise a mold changing station (300, 301, 302) configured to be capable of removing a mold from its mounting site (100, 200) and mounting a different mold at the said mounting site (100, 200), or configured to change the rotational position of a mold (112, 212) mounted to the frame (10, 20), or both.
Abstract:
A method of removing a liquid from a container (1) for accommodating an ophthalmic contact lens, in particular a soft contact lens, during transporting the container (1) from a liquid bath (13) to a subsequent processing station (14), the method including the steps of: transporting the container (1) from the liquid bath to the subsequent processing station, generating suction (20), and applying the suction (20) to a bottom (11) of the container (1) during the step of transporting the container (1) from the liquid bath to the subsequent processing station, thereby removing the liquid from the container (1).
Abstract:
There is described a process for manufacturing an ophthalmic lens and an apparatus for forming an ophthalmic lens, in particular a silicone hydrogel contact lens, wherein in a mold assembly a first and a second mold half (101, 102) are first arranged in an intermediate closed position in which the mold surfaces of the two mold halves are spaced apart from each other at a distance increase (d1) of preferably 1 to 100 μm relative to a final distance (d0) in a final closed position, and wherein, during curing of the lens forming material (202), the mold surfaces (105, 106) of the mold halves (101, 102) are actively or passively moved or moving from the intermediate closed position to the final closed position, where the distance increase (d1) is 0.
Abstract:
A cuvette system (1) for use in the optical inspection of ophthalmic lenses comprises at least one receptacle (2) for accommodating an ophthalmic lens. The receptacle (2) has a longitudinal extension and an opening (20) arranged at one longitudinal end thereof. The receptacle (2) is adapted for containing a liquid. The cuvette system further comprises at least one inspection window (3) having an inspection surface (31). The inspection window (3) is arranged stationary and from the receptacle (2). The inspection window (3) is adapted for being joined to the receptacle (2) at the opening (20) of the receptacle (2) such that the inspection surface (31) of the inspection window (3) is immersed in the liquid. The inspection window (3) is further adapted for being removed from the opening (20) of the receptacle (2).
Abstract:
A method for transferring objects such as ophthalmic lenses or contact lenses between two consecutive processing stations, particularly processing stations having differing cycle times or cycle speeds is disclosed, including removing the objects from a preceding processing station, in which the objects are advanced with a first cycle speed, transporting the removed objects to a subsequent processing station including a plurality of consecutively arranged receptacles (1-10), which are advanced through the subsequent processing station with a second cycle speed faster than the first cycle speed. The objects may be transported via at least one feed tube (12, 13), each feed tube ending in a respective transfer nozzle (14, 15) which is arranged in vicinity of a corresponding one of the receptacles (1-10) and which is aligned with an inlet of the receptacle (4, 5; 4, 6). The respective transfer nozzles (14, 15) are capable of being moved synchronously with and in the direction of advancement of corresponding receptacle.
Abstract:
A method for an automated inline determination of the refractive power of an ophthalmic lens (5) including providing an inspection cuvette having an optically transparent bottom (21) and having a concave inner surface (210) and containing the ophthalmic lens (5) immersed in a liquid, and providing a light source (42) and a wavefront sensor (6) including a detector. The light coming from the light source (42) and having passed the ophthalmic lens (5) contained in the inspection cuvette and impinging on the detector generates signals at the detector. By comparing the signals generated at the detector with predetermined signals representative of a reference refractive power, the refractive power of the ophthalmic lens (5) is thereby determined.
Abstract:
A manufacturing module (MM) for contact lenses comprises a plurality of manufacturing stations (300, 301, 302, 310, 320, 321, 322, 330, 331, 340, 341, 342, 350, 351, 352) arranged in a closed loop and a plurality of lens mold carriers (1, 2) which are transported through the manufacturing stations. Each lens mold carrier (1, 2) comprises a frame (10, 20) having a predetermined number of mounting sites (100, 200) arranged along the frame. Each lens mold carrier (1, 2) further comprises a predetermined number of molds (112, 212) removably mounted to the frame (10, 20) at the mounting sites (100, 200), the molds being reusable male or female molds (212, 112). Two lens mold carriers (1, 2) are assigned to each other to form a pair, so that upon mating the pair of lens mold carriers (1, 2) the male and female molds (212, 112) are mated to form mold cavities defining the shape of the lenses. The manufacturing stations comprise a mold changing station (300, 301, 302) configured to be capable of removing a mold from its mounting site (100, 200) and mounting a different mold at the said mounting site (100, 200), or configured to change the rotational position of a mold (112, 212) mounted to the frame (10, 20), or both.
Abstract:
A modular production line for the production of contact lenses comprises at least three separate modules: a manufacturing module (MM), an inspection module (IM), and a packaging module (PP). The modular production line further comprises fixedly arranged transfer interfaces between the individual modules (MM, IM, PP) for transferring the lenses from a preceding module to a subsequent module. The manufacturing module (MM) comprises a plurality of manufacturing stations (300, 301, 302, 310, 320, 321, 322, 330, 331, 340, 341, 342, 350, 351, 352) which are grouped to form a plurality of individual manufacturing units (30; 31; 32; 33; 34; 35) arranged in a closed loop. Reusable male and female molds (212, 112) are transported through the manufacturing stations of the manufacturing units, and each manufacturing unit (30; 31; 32; 33; 34; 35) comprises a plurality of the manufacturing stations (300, 301, 302, 310, 320, 321, 322, 330, 331, 340, 341, 342, 350, 351, 352). A plurality of transfer robots (36) is provided, each transfer robot (36) of the plurality of transfer robots (36) being arranged at a location between two manufacturing units (30; 31; 32; 33; 34; 35) to transfer the reusable molds from one manufacturing unit to the other manufacturing unit.
Abstract:
There is described an apparatus and method for transporting contact lenses through dipping baths (2, 3, 4) for e.g. rinsing, extraction, coating or loading purposes. The lenses are individually accommodated in respective containers (5) which are capable of enabling a flow of treatment fluid (S) into and out of the container (5). During their automatic transport through the dipping baths (2, 3, 4) the containers (5) are held in carriers (6). Lifters (9) are provided for automatically lowering and raising the carriers (6) in a reciprocating manner along their travel through the dipping bath (2, 3, 4). The reciprocating lowering and raising of the containers (5) is accomplished such, that a portion of each container which accommodates a contact lens remains immersed in the treatment fluid (S) which is contained in the dipping bath (2, 3, 4) while the container (5) suspended from the carrier (6) is advanced through the dipping bath (2, 3, 4) from a starting end to a leaving end thereof.