CT IMAGING SYSTEM
    22.
    发明申请

    公开(公告)号:US20240410839A1

    公开(公告)日:2024-12-12

    申请号:US18699360

    申请日:2022-09-29

    Abstract: A CT imaging system is provided, including: a scanning channel disposed in a first direction; a radiation source component disposed on one side of the scanning channel, wherein the radiation source component is used to emit radiation beams; a detector component disposed on another side of the scanning channel, wherein the detector component is disposed opposite to the radiation source component and used to receive the radiation beams, and the radiation beams forms an imaging region between the radiation source component and the detector component, wherein the detector component includes at least two detection regions and at least one blank region, the imaging region has a central cross-section of the radiation beams extending through the radiation source component, and a position of the detection region and a position of the blank region are complementary with respect to the central cross-section of the radiation beams.

    METHOD, APPARATUS AND SYSTEM FOR RECONSTRUCTING IMAGES OF 3D SURFACE

    公开(公告)号:US20190295250A1

    公开(公告)日:2019-09-26

    申请号:US16316487

    申请日:2017-05-03

    Abstract: The present disclosure discloses a method, an apparatus and a system for reconstructing an image of a three-dimensional surface. The method comprises the following steps of: constructing a three-dimensional model of the three-dimensional surface using X-ray imaging data obtained by imaging the three-dimensional surface with X-ray and extracting three-dimensional coordinate parameters of feature points; constructing one or more two-dimensional posture images of the three-dimensional surface using visible light imaging data obtained by imaging the three-dimensional surface with visible lights, and extracting two-dimensional coordinate parameters of feature points from each of the two-dimensional posture images; establishing a mapping relationship between the two-dimensional posture image and the three-dimensional model by matching the three-dimensional coordinate parameters and the two dimensional coordinate parameters of the feature points in each of the two-dimensional posture image; and filling the one or more two-dimensional posture image onto the three-dimensional model utilizing the mapping relationship established for each of the two dimensional posture images to form a reconstructed image of the three-dimensional surface, wherein the X-ray imaging data and the visible light imaging data of the three-dimensional surface along the same orientation are simultaneously captured.

    Multi-energy spectrum X-ray grating-based imaging system and imaging method

    公开(公告)号:US10267753B2

    公开(公告)日:2019-04-23

    申请号:US15328881

    申请日:2015-10-28

    Abstract: The present disclosure relates to a multi-spectrum X-ray grating-based imaging system and imaging method. In one illustrative implementation, an exemplary multi-spectrum X-ray grating-based imaging system according to the present disclosure may comprise an incoherent X-ray source for emitting X-rays to irradiate an object to be detected, a grating module comprising a first absorption grating and a second absorption grating which are disposed in parallel to each other and are sequentially arranged in an X-ray propagation direction, and an energy-resolved detecting device for receiving the X-rays that have passed through the first absorption grating and the second absorption grating.

    CT systems and methods thereof
    29.
    发明授权

    公开(公告)号:US09786041B2

    公开(公告)日:2017-10-10

    申请号:US14576705

    申请日:2014-12-19

    CPC classification number: G06T7/0002 G01V5/005 G06T2207/30112

    Abstract: A CT system and method thereof are discloses. The system includes: a fixed multi-plane multi-source X-ray generation device and a control system thereof that provide X-ray source used in luggage inspection; a single-energy, pseudo-dual-energy or spectral detector system and data transfer system that receive perspective data of X ray penetrating the luggage, and transfer the data to a computer for processing; a conveyor and a control system thereof that control a speed for moving the luggage forth and back, and perform tomogram scanning; and a host computer system that performs tomogram reconstruction and provides man-machine interaction. The system takes full advantage of characteristics, such as high speed and stability, brought by the distributed ray sources which replace the normal slip ring technology. The system also adopts the idea of inverse-geometry CT, and reduces detector area and cost by increasing the number of ray sources. With the reduction of detector area, cone-beam artifacts and cup-shape artifacts caused by scattering are also reduced, and influence of the oblique effect on registration of dual-energy data is suppressed.

    Spiral CT systems and reconstruction methods
    30.
    发明授权
    Spiral CT systems and reconstruction methods 有权
    螺旋CT系统和重建方法

    公开(公告)号:US09466137B2

    公开(公告)日:2016-10-11

    申请号:US14708866

    申请日:2015-05-11

    Abstract: The present disclosure discloses a spiral CT system and a reconstruction method thereof. In some embodiments, it is proposed that data missing due to a large pitch is compensated by weighting the complementary projection data of the projection data obtained using the spiral CT system. After the data is complemented, the projection data is rebinned as cone parallel beam data, cone-angle cosine weighting and one-dimensional filtering are implemented on the rebinned data, and parallel beam back projection is finally implemented on the filtered data, to obtain the reconstructed images. In some embodiments, with the above method, the speed of the belt can be increased by more than one time in a case that the existing area of the detectors and the existing speed of the slip ring are unchanged, thereby improving the pass rate of the luggage and maintaining the quality of the reconstructed images unchanged.

    Abstract translation: 本公开公开了一种螺旋CT系统及其重建方法。 在一些实施例中,提出通过对使用螺旋CT系统获得的投影数据的互补投影数据进行加权来补偿由于大音调而丢失的数据。 数据补充后,将投影数据重新设置为锥形平行光束数据,对重定位数据进行锥角余弦加权和一维滤波,最后在滤波数据上实现平行光束反投影,获得 重建图像。 在一些实施例中,利用上述方法,在检测器的现有区域和滑环的现有速度不变的情况下,带的速度可以增加多于一次,从而提高了传感器的通过率 行李保持重建图像的质量不变。

Patent Agency Ranking