摘要:
A catheter comprising: —a transmission line (104, 106, 924, 1202, 1302, 1902), wherein the transmission line comprises a plurality of radio frequency traps (118, 318, 418, 518, 618, 718, 818, 918, 1018, 1202, 1404); and —a cooling line (104, 304, 1200, 1900) for cooling the plurality of radio frequency traps with a fluid.
摘要:
A magnetic resonance method comprises applying a radio frequency excitation in an examination region (14), measuring a magnetic resonance signal generated by the applied radio frequency excitation in a subject (16) in the examination region, monitoring a radio frequency parameter during the applying, and evaluating subject safety based on the monitoring. A magnetic resonance safety monitor (40) comprises an analyzer (42, 44, 46, 50) configured to (i) receive a radio frequency signal during magnetic resonance excitation, (ii) extract a radio frequency parameter from the received radio frequency signal, and (iii) evaluate subject safety based on the extracted radio frequency parameter, and a remediation module (54) configured to perform a remediation of the magnetic resonance excitation responsive to the evaluation (iii) indicating a potentially unsafe condition.
摘要:
The invention relates to a method of characterizing the RF transmit chain of a magnetic resonance imaging scanner (1) using a local transmit/receive coil system (204; 210), comprising a first local NMR probe and a first local magnetic resonance coil, the first NMR probe being spatially located in immediate neighborhood to the first coil, a local receive coil system (206; 208), comprising a second local NMR probe and a second local magnetic resonance coil, the second NMR probe being spatially located in immediate neighborhood to the second coil, wherein the transmit chain comprises an external MR coil (9; 11; 12; 13), the method comprising: determining with the first magnetic resonance coil, a first MR signal phase evolution of the local RF transmit field generated by MR excitation of the first probe using the first magnetic resonance coil by measuring the RF response of the first probe upon said excitation, determining with the second magnetic resonance coil a second MR signal phase evolution of the local RF transmit field generated by MR excitation of the second probe using the external MR coil (9; 11; 12; 13) by measuring the RF response of the second probe upon said excitation, calculating a phase offset between the first and second MR signal phase evolution.
摘要:
A magnetic resonance method comprises applying a radio frequency excitation in an examination region (14), measuring a magnetic resonance signal generated by the applied radio frequency excitation in a subject (16) in the examination region, monitoring a radio frequency parameter during the applying, and evaluating subject safety based on the monitoring. A magnetic resonance safety monitor (40) comprises an analyzer (42, 44, 46, 50) configured to (i) receive a radio frequency signal during magnetic resonance excitation, (ii) extract a radio frequency parameter from the received radio frequency signal, and (iii) evaluate subject safety based on the extracted radio frequency parameter, and a remediation module (54) configured to perform a remediation of the magnetic resonance excitation responsive to the evaluation (iii) indicating a potentially unsafe condition.
摘要:
A catheter comprising:-a transmission line (104, 106, 924, 1202, 1302, 1902,), wherein the transmission line comprises a plurality of radio frequency traps (118, 318, 418, 518, 618, 718, 818, 918, 1018, 1202, 1404,); and-a cooling line (104, 304, 1200, 1900) for cooling the plurality of radio frequency traps with a fluid.
摘要:
The invention relates to a device for magnetic resonance imaging of a body (7), wherein the device (1) is arranged to a) generate a series of MR echo signals (20) by subjecting at least a portion of the body (7) to an MR imaging sequence comprising RF pulses and switched magnetic field gradients, b) acquire the MR echo signals for reconstructing an MR image (21) therefrom, c) calculate a susceptibility gradient map (22) from the MR echo signals or from the MR image (21), the susceptibility gradient map (22) indicating local susceptibility induced magnetic field gradients, d) determine the position of an interventional instrument (16) having paramagnetic or ferromagnetic properties from the susceptibility gradient map (22).
摘要:
A medical apparatus (1100) comprising a magnetic resonance imaging system and an interventional device (300) comprising a shaft (302, 1014, 1120). The medical apparatus further comprises a toroidal magnetic resonance fiducial marker (306, 600, 800, 900, 1000, 1122) attached to the shaft. The shaft passes through a center point (610, 810, 908, 1006) of the fiducial marker. The medical apparatus further comprises machine executable instructions (1150, 1152, 1154, 1156, 1158) for execution by a processor. The instructions cause the processor to acquire (100, 200) magnetic resonance data, to reconstruct (102, 202) a magnetic resonance image (1142), and to receive (104, 204) the selection of a target volume (1118, 1144, 1168). The instructions further cause the processor to repeatedly: acquire (106, 206) magnetic resonance location data (1146) from the fiducial marker and render (108, 212) a view (1148, 1162) indicating the position of the shaft relative to the target zone.
摘要:
The invention relates to a method of characterizing the RF transmit chain of a magnetic resonance imaging scanner (1) using a local transmit/receive coil system (204; 210), comprising a first local NMR probe and a first local magnetic resonance coil, the first NMR probe being spatially located in immediate neighborhood to the first coil, a local receive coil system (206; 208), comprising a second local NMR probe and a second local magnetic resonance coil, the second NMR probe being spatially located in immediate neighborhood to the second coil, wherein the transmit chain comprises an external MR coil (9; 11; 12; 13), the method comprising: determining with the first magnetic resonance coil, a first MR signal phase evolution of the local RF transmit field generated by MR excitation of the first probe using the first magnetic resonance coil by measuring the RF response of the first probe upon said excitation, determining with the second magnetic resonance coil a second MR signal phase evolution of the local RF transmit field generated by MR excitation of the second probe using the external MR coil (9; 11; 12; 13) by measuring the RF response of the second probe upon said excitation, calculating a phase offset between the first and second MR signal phase evolution.
摘要:
A medical apparatus (1100) comprising a magnetic resonance imaging system and an interventional device (300) comprising a shaft (302, 1014, 1120). The medical apparatus further comprises a toroidal magnetic resonance fiducial marker (306, 600, 800, 900, 1000, 1122) attached to the shaft. The shaft passes through a center point (610, 810, 908, 1006) of the fiducial marker. The medical apparatus further comprises machine executable instructions (1150, 1152, 1154, 1156, 1158) for execution by a processor. The instructions cause the processor to acquire (100, 200) magnetic resonance data, to reconstruct (102, 202) a magnetic resonance image (1142), and to receive (104, 204) the selection of a target volume (1118, 1144, 1168). The instructions further cause the processor to repeatedly: acquire (106, 206) magnetic resonance location data (1146) from the fiducial marker and render (108, 212) a view (1148, 1162) indicating the position of the shaft relative to the target zone.
摘要:
A handpiece defines a bore in which a proximal end of a catheter or other interventional instrument is received. An insulating support supports an interventional instrument which carries a transmission line winding in, but spaced from, the internal bore. A handpiece winding disposed along the bore interacts with the instrument transmission line winding to form an inductive coupling with the instrument transmission line winding. After the handpiece is slid axially to adjust the inductive coupling between the handpiece and windings, a locking mechanism functions in such a manner that the interventional instrument is inhibited from axial sliding motion relative to the handpiece while permitting rotation of the interventional instrument relative to the handpiece thus maintaining the inductive coupling while allowing optimal handling of the device.