Abstract:
An image sensor device is provided to effectively improve the signal discrimination of sensed/sampled pixel values/signals in the image sensor device operating in a dark condition as well as effectively avoiding signal saturation when such image sensor device operates in a light/bright condition. Such image sensor device, when operating in dark/light conditions, can perform the exposure operation to get/sample accurate pixel image signal and pixel reset signal for only one time without estimating the pixel image signal and pixel reset signal by performing the exposure operation twice.
Abstract:
An image sensor apparatus includes a pixel array having pixel units each including an image sensor cell and a processing circuit. The processing circuit includes a bias transistor, second floating diffusion node, first switch unit, signal transfer capacitor, reset transfer capacitor, second switch unit, and third switch unit. Bias transistor is coupled between first and second floating diffusion nodes and has control terminal coupled to bias voltage. First switch unit is coupled between first and second floating diffusion nodes. Second switch unit is coupled between second floating diffusion node and signal transfer capacitor. Third switch unit is coupled between second floating diffusion node and reset transfer capacitor. Signal transfer capacitor is selectively coupled to second floating diffusion node. Reset transfer capacitor is selectively coupled to second floating diffusion node.
Abstract:
An image sensor includes a pair of pixel sharing circuits, a second reset transistor, an amplifier transistor, a readout transistor and a control circuit. The pair of pixel sharing circuits connected to a floating diffusion node, each including a photon device, a first reset transistor, a capture transistor, a holding transistor, a capacitor and a sharing transistor. The control circuit is configured to control the first reset transistor, the first capture transistor, the first holding transistor and the sharing transistor of each of the pair of sharing pixel circuits to be turned on or off.
Abstract:
An amending circuit includes a comparing unit, a predetermined voltage generating unit, a roller switch, alight emitting unit switch and a controlling unit. A pin of the mouse and the predetermined voltage generating unit are respectively connected to two input terminals of the comparing unit. The controlling unit is coupled to the light emitting unit switch and the roller switch. The controlling unit switches to a motion detecting mode to drive a current of the current source to flow toward a second pin via the first pin and a light emitting unit of the mouse. The controlling unit further switches to a roller detecting mode to set a pressure of the first pin lower than a predetermined voltage of the predetermined voltage generating unit while the roller is grounded or to set the first pin higher than the predetermined voltage while the roller is not grounded.
Abstract:
A signal amplifying circuit with noise suppression function includes a first circuit module and a second circuit module. The first circuit module includes a current source and a switch. The current source is connected to an input stage for inputting a current. The switch is connected to a first output terminal and adapted to switch the input stage and the first output terminal according to a chopping frequency. The second circuit module includes an equivalent capacitance disposed between an output stage and a second input terminal connected to the first output terminal. The signal amplifying circuit controls current volume of the current source and capacity value of the equivalent capacitance to accordingly adjust an interior frequency bandwidth of the signal amplifying circuit, and the interior frequency bandwidth is smaller than the chopping frequency and greater than an input signal of the input stage.
Abstract:
An amending circuit includes a comparing unit, a predetermined voltage generating unit, a roller switch, alight emitting unit switch and a controlling unit. A pin of the mouse and the predetermined voltage generating unit are respectively connected to two input terminals of the comparing unit. The controlling unit is coupled to the light emitting unit switch and the roller switch. The controlling unit switches to a motion detecting mode to drive a current of the current source to flow toward a second pin via the first pin and a light emitting unit of the mouse. The controlling unit further switches to a roller detecting mode to set a pressure of the first pin lower than a predetermined voltage of the predetermined voltage generating unit while the roller is grounded or to set the first pin higher than the predetermined voltage while the roller is not grounded.