Abstract:
There is provided a physiological detection device including a light source, a light detector, a processing unit and a display device. The light source emits light to illuminate a skin surface. The light detector receives the light from the skin surface to output detected signals. The processing unit confirms an attached state according to the detected signals and controls the display device to show an indication signal or a warning message when the attached state is confirmed not good.
Abstract:
A physiological detection system including an image sensor, a converting unit, a retrieving unit and a processing unit is provided. The image sensor includes a plurality of pixels respectively configured to output a PPG signal. The converting unit is configured to convert a plurality of PPG signals of a plurality of pixels regions to a plurality of frequency domain signals. The retrieving unit is configured to respectively retrieve a spectral energy of the frequency domain signals corresponding to each of the pixel regions. The processing unit is configured to construct a 3D energy distribution according to the spectral energies.
Abstract:
A wearable device including a skin sensor and a processor is provided. The processor is configured to receive an authentication data for authenticating a user when a wearing state of the wearable device is adjacent to a skin surface of the user, execute a predetermined function in response to a request when the authentication data matches a pre-stored data and the skin sensor determines that the wearable device does not leave the skin surface after the authentication data is received, and reject or ignore the request when the skin sensor determines that the wearable device leaves the skin surface before the predetermined function is executed.
Abstract:
There is provided a system architecture including a PPG hardware module and a MEMS hardware module. The PPG hardware module processes PPG raw data, which is generally composed of analog signals or digital signals. The PPG hardware module filters the raw data for later digital calculation to, for example, find out frequency signals with higher peak values. The PPG hardware module then outputs the selected frequency signals to an MCU for heart rate calculation. The MEMS hardware module receives MEMS raw data from a motion detector made of MEMS elements. The MEMS raw data represents motion status of a user that could possibly affect the heart rate determination result. The MEMS hardware module filters the raw data for later digital calculation to find out frequency signals with higher peak values caused by motion.
Abstract:
An imaging device including a pixel matrix and a processor is provided. The pixel matrix includes a plurality of phase detection pixels and a plurality of regular pixels. The processor performs autofocusing according to pixel data of the phase detection pixels, and determines an operating resolution of the regular pixels according to autofocused pixel data of the phase detection pixels, wherein the phase detection pixels are always-on pixels and the regular pixels are selectively turned on after the autofocusing is accomplished.
Abstract:
A physiological detection system including an image sensor, a converting unit, a retrieving unit and a processing unit is provided. The image sensor includes a plurality of pixels respectively configured to output a PPG signal. The converting unit is configured to convert a plurality of PPG signals of a plurality of pixels regions to a plurality of frequency domain signals. The retrieving unit is configured to respectively retrieve a spectral energy of the frequency domain signals corresponding to each of the pixel regions. The processing unit is configured to construct a 3D energy distribution according to the spectral energies.
Abstract:
A storage media provided by the present invention, has a non-transitory processing software for computing a position of an object in a distance measurement system, the execution of the processing software comprising: receiving a plurality of reference image information contained in an image with a speckle pattern, wherein the image is projected from a light beam on a plurality of reference flat surfaces which are located on different position points, and the speckle contains a plurality of speckles; receiving an object image information contained in an image with the speckle pattern which is projected from the light beam on an object; obtaining a plurality of comparison results through comparing the plurality of reference image information with the object image information; and computing the position of the object through performing an interpolation operation to the plurality of comparison results.