Abstract:
A keyboard with a distance detecting function includes a plurality of keyswitches, and each keyswitch includes a keycap, a base, a supporting component, a recovering component and a distance detecting unit. The base has a guide slot structure. The supporting component has a first end connecting to the keycap, and a second end movably assembled with the guide slot structure. The recovering component is disposed between the supporting component and the guide slot structure. The distance detecting unit is detachably disposed on the base, and adapted to detect a movement of the keycap relative to the base for determining whether the keyswitch is actuated.
Abstract:
There is provided a communication system including a transmission interface, a master device and a slave device. The transmission interface includes a TR/ACK channel configured to transmit a trigger signal and an acknowledge signal and a DA channel configured to transmit a normal data or a simplified data. The master device sends the trigger signal via the TR/ACK channel before data transmission begins. The slave device sends the normal data or the simplified data to the master device via the DA channel after receiving the trigger signal.
Abstract:
A computer readable recording media comprising at least one program code recorded thereon, a touch control method is performed when the program code is read and executed. The touch control method comprises the following steps: (a) detecting location data for an object relative to a detecting surface to generate at least one displacement data; (b) storing the displacement data to a storage apparatus and outputting the stored displacement data to a target apparatus from the storage apparatus after storing the displacement data for a predetermined time period, when the object touches the detecting surface; and (c) cleaning the stored displacement data when the object leaves the detecting surface.
Abstract:
An optical navigation device includes a first optical mechanism, a second optical mechanism, an image sensor, and a controller. The first optical mechanism is arranged for projecting light on a surface to generate a first projection result while the second optical mechanism is arranged for projecting light on the surface to generate a second projection result. The image sensor is arranged for sensing at least one of the first projection result and the second projection result within a sensing range to generate at least one first image sensing result. The controller is coupled to the first optical mechanism, the second optical mechanism and the image sensor, and is arranged for controlling the first optical mechanism and the second optical mechanism according to the first image sensing result. The optical navigation device accordingly performs movement detection.
Abstract:
An optical finger mouse includes a housing, a light source, a light guide mechanism, an image sensor, a processor and a feedback module. The housing is arranged for an object to be detected performing a motion control thereon, wherein the object to be detected slides or taps on the housing to perform the motion control. The light source is arranged for generating light. The light guide mechanism is arranged for guiding the light generated by the light source to project on the object to be detected. The image sensor captures reflected light generated from the object to be detected to generate a sensing result. The processor generates detection information according to the sensing result. The feedback module generates feedback according to the detection information.
Abstract:
A computer readable recording media comprising at least one program code recorded thereon, a touch control method is performed when the program code is read and executed. The touch control method comprises the following steps: (a) detecting location data for an object relative to a detecting surface to generate at least one displacement data; (b) storing the displacement data to a storage apparatus and outputting the stored displacement data to a target apparatus from the storage apparatus after storing the displacement data for a predetermined time period, when the object touches the detecting surface; and (c) cleaning the stored displacement data when the object leaves the detecting surface.
Abstract:
An optical mouse apparatus includes a light source circuit, a sensing circuit, and a processing circuit. The light source circuit is used for generating and emitting a light signal onto a surface so as to generate a light reflected signal. The sensing circuit is used for estimating an image offset of the optical mouse apparatus. The processing circuit is coupled to the light source circuit and the sensing circuit and used for generating and outputting a control signal to a terminal according to the image offset outputted by the sensing circuit. The sensing circuit is further used for detecting at least one of a moving speed or an offset direction of the image offset of the optical mouse apparatus, so as to dynamically determine whether to compress data of the image offset outputted to the processing circuit, for reducing data amount read by the processing circuit.
Abstract:
A method for configuring an optical input device is provided. The optical input device includes a movable unit and a sensing device. The movable unit is arranged to move within a predetermined range. The sensing device is arranged to detect a position within the predetermined range at which the movable unit is located. The method includes: adjusting an optical setting of the sensing device to obtain an optimal dynamic range of the sensing device; and configuring a valid input threshold for the optical input device based on the optimal dynamic range.
Abstract:
A keyswitch capable of identifying keycap change includes a substrate, a keycap, a resilient component, an optical detection module and a processor. The keycap is disposed above the substrate and includes a reflective element. The optical detection module is disposed on the substrate and adapted to receive an optical signal reflected from the reflective element. The processor is disposed on the substrate and electrically connected to the optical detection module. The processor is adapted to analyze the optical signal for acquiring a type and a movement of the keycap. The keyswitch further includes a supporting component and a membrane. An end of the supporting component is connected to the keycap, and the other end of the supporting component is connected to the substrate. The membrane has light penetrating property and is disposed above the optical detection module.
Abstract:
In the present invention, an anti-pinch device which uses a simple optical mechanism to prevent the user being hurt by the moving part before the moving part touches the user is disclosed. Also, a space computing device which uses a simple optical mechanism to compute acquired space of a target object is disclosed. Additionally, a hovering control device which uses a simple optical mechanism thereby the user can control the hovering control device without touching the hovering control device is disclosed. The optical mechanism comprises at least one light source and at least one optical sensor, which can arrange in various ways.