Abstract:
A connector including coupling and sleeve flanges defining opposing recesses separated by an axial gap along an elongate axis. The connector also includes a arcuate bridge member radially biased outwardly against at least one of the internal contact surfaces of the opposing recesses and spanning the axial gap. The arcuate bridge member maintains electrical conductivity across the axial gap even when the sleeve does not electrically contact the coupling member. At least one of the contact surfaces defines a conical surface which is responsive to the radially biased conductive bridge member to produce a radial force against the internal contact surfaces. The radial force produces an axial force component along the elongate axis.
Abstract:
A modular passive RF apparatus includes a passive RF portal and a passive RF expansion module configured to be removably coupled with the passive RF portal. A male connector is configured to extend from a top surface of the passive RF portal, and a female connector is configured to extend from the first end wall of the passive RF expansion portal. The female connector is configured to slidingly engage the male connector in a direction parallel to the top surface of the passive RF portal in order to mechanically couple the passive RF expansion module with the passive RF portal, and the male connector is configured to prevent the female connector from being removed from the male connector in a direction perpendicular to the top surface of the passive RF portal.
Abstract:
A compartmentalized enclosure for controlling access to different components in a telecommunications system including a lower housing member shaped to define an outer perimeter portion and a cavity, a panel member configured to move between a closed panel position, where the panel member prevents access to equipment within the cavity, and an open panel position, where the panel member permits access to the cavity, wherein the panel member is disposed in the cavity of the lower housing member, and is shaped to define a inner perimeter portion that is configured to substantially match and fit within the outer perimeter portion of the lower housing member so as to form a substantially perimeter matching portion that prevents access to equipment within the cavity between the inner perimeter portion and the outer perimeter portion when the panel member is in the closed position.
Abstract:
A connector for coupling a fiber optic cable with a connection point includes a connector body at a first end of the connector and extending in a longitudinal direction and a connector housing at a second end of the connector. The connector body defines a first longitudinal conduit configured to receive a duct, and the duct is configured to slidingly receive the fiber optic cable. A compression fitting is configured to be received about a first end of the connector body and to slide relative to the connector body in the longitudinal direction to radially compress the first end of the connector body to grip the duct. The connector housing includes a second longitudinal conduit substantially aligned with the first longitudinal conduit in the longitudinal direction and a connection portion configured to couple the fiber optic cable to the connection point. The first longitudinal conduit and the second longitudinal conduit are configured to slidingly receive the fiber optic cable.
Abstract:
A coaxial cable connector includes a body configured to engage a coaxial cable having a conductive electrical grounding property, a post configured to engage the body and the coaxial cable when the connector is installed on the coaxial cable, a nut configured to engage an interface port at a retention force, and a retention adding element configured to increase the retention force between the nut and the interface port so as to maintain ground continuity between the interface port and the nut when the nut is in a loosely tightened position on the interface port.
Abstract:
A breakaway coaxial cable connector includes a first conductive body configured to engage a first cable, and a second conductive body configured to engage a second cable. The first conductive body and the second conductive body are configured to be selectively coupled to each other so as to maintain electrical connectivity between the first cable and the second cable during operation of the connector when a first tension force below a predetermined threshold level is applied between the first cable and the second cable. The first conductive body and the second conductive body are configured to be selectively de-coupled from each other so as to interrupt electrical connectivity between the first cable and the second cable during operation of the connector when a second tension force above the predetermined threshold level is applied between the first cable and the second cable.
Abstract:
A reel enclosure includes a base and a door pivotally coupled with the base. The door is movable between a first closed position and a second open position and is configured to hold a reel at an interior surface of the door. The reel is configured to have cable wound thereon. In the first closed position, the base is configured to prevent the reel from rotating relative to the door and the base, and, in the second open position, the door is configured to hold the reel outside of an interior of the base and permit the reel to rotate relative to the door and the base.
Abstract:
A modular RF apparatus includes an RF portal and an RF expansion module configured to be coupled with the RF portal. The modular RF apparatus is configured to expand the number of outputs of the RF portal by adding the RF expansion module in a manner that minimizes an increase in the spatial footprint of the modular RF apparatus while allowing easy access to all ports of the modular RF apparatus. The RF portal and the RF expansion module are configured to interlock to create an integrated functional block. The modular RF apparatus are configured to permit upgrading of the RF portal by adding the RF expansion module without disrupting existing connections to the RF portal.
Abstract:
A tap adapter configured to removably couple a coaxial cable connector with a cable tap includes a body, a nut extending about the body, a retaining ring configured to couple the body with the nut, and a collet disposed in the body. The nut includes a first end configured to receive a coaxial cable connector. The collet has a first end configured to receive a center conductor of a cable terminated by the coaxial cable connector and a second end configured to be coupled with a port of a cable tap. The collet is configured to provide an electrical connection between the center conductor and the port of the cable tap. The nut is configured to rotate relative to the body and to slide axially relative to the body as limited by the retaining ring. The tap adapter permits the coaxial cable connector to be removed from the tap adapter while the tap adapter remains mechanically coupled with the cable tap and the second end of the collet remains mechanically and electrically coupled with the port.
Abstract:
A modular passive RF apparatus includes a passive RF portal and a passive RF expansion module configured to be removably coupled with the passive RF portal. A male connector is configured to extend from a top surface of the passive RF portal, and a female connector is configured to extend from the first end wall of the passive RF expansion portal. The female connector is configured to slidingly engage the male connector in a direction parallel to the top surface of the passive RF portal in order to mechanically couple the passive RF expansion module with the passive RF portal, and the male connector is configured to prevent the female connector from being removed from the male connector in a direction perpendicular to the top surface of the passive RF portal.