摘要:
A lighting device has a light source, a reflector dish with a central opening facing the light source, and a lens between the light source and the reflector dish. The lens is so arranged that light emitted from the source towards the central opening of the reflector dish is diffracted away from the central opening. The reflector dish is arranged to reflect light received from the source through the lens back past the lens and source.
摘要:
In one method of and apparatus for varying the luminosity of illumination, each of a plurality of light sources has an on state in which it emits light and an off state in which it does not emit light. Each of the plurality of light sources is switched cyclically between the on state and the off state in a sequence over a cycle period. The switching sequence is selected such that the number of said light sources that are on is uniform over the cycle. The luminosity of the illumination is varied by varying the proportion of each cycle for which each light source is switched on.
摘要:
A linear Fresnel lens for LED illumination is configured initially by using a meridional flux-assignment method and is then corrected by assessing the three-dimensional flux distribution of individual facets. The facet angles are slightly altered as required to produce uniformity. A variety of specialized lens shapes are generated, such as for illuminating shelves in commercial refrigerator food-display cases. The lens shapes are suitably thin for economical production by extrusion.
摘要:
A cylindrical irradiance-redistribution lens is positioned over a line of LEDs, and is shaped to redistribute their light for uniformly illuminating a nearby planar target, such as shelves, signs, or walls. The lens shape is calculated via matching the cumulative lateral flux functions of the line of LEDs with that of the uniformly illuminated planar target. Numerous preferred embodiments are disclosed for a variety of illumination geometries.
摘要:
An illumination apparatus comprises an elongated waveguide having proximal and distal ends and a central longitudinal axis. The waveguide includes an elongated forward side for outputting light and an elongated rearward side having an elongated reflective surface for reflecting light towards the forward side. A light source such as a solid state light emitter may be situated on the proximal end of the waveguide introduces light into the waveguide in the form of a beam which propagates from the proximal end to the distal end. Light traveling within the waveguide is reflected from the reflective surface along the elongated rearward side towards the forward side for viewing.
摘要:
An illumination lens for hemispherically emitting light emitting diodes is disclosed that produces a square illumination pattern too narrow for a refractive lens to produce by itself. The lens is freeform in that it departs from circular symmetry in order to produce a square pattern. It is catadioptric in that it comprises a central refractive lens with a square output of desired angular width and a surrounding TIR prism that produces the same square output, overlapping the first for better uniformity of the sum. The central lens and circumambient TIR prism are joined in a monolithic configuration suitable for injection molding. Vector equations are disclosed for generating the shapes of the five optically active surfaces of the invention, two internal surfaces forming a central cavity surrounding the LED and three external surfaces, all five departing from circular symmetry.
摘要:
Various embodiments described herein comprise array of light emitting diodes and a cylindrical lens having front and rear curved surfaces. The cylindrical lens is disposed to receive light from the light emitting diodes and to redistribute the light. The cylindrical lens is located no more than about 8 inches distance from the front an illumination target, which may for example, comprise products on shelves in a refrigerator. The front and rear surfaces of the cylindrical lens are shaped to provide substantially uniform illumination across the target.
摘要:
Apparatus for integral collection and storage of solar thermal energy, comprises(a) a relatively large storage vessel having side and end walls that absorb solar energy in order to heat its contents;(b) a translucent enclosure surrounding the large storage vessel, for suppression of convective heat losses;(c) structure on the vessel for the suppression of thermal radiation heat losses from said large storage vessel;the apparatus providing a ratio of thermal mass, as measured in BTU per degree Fahrenheit, to heat-loss coefficient, as measured in BTU per degree Fahrenheit per hour, exceeding 36 hours.
摘要:
A light source emits light into a solid angle exceeding pi steradians with a known intensity distribution. An illumination lens has a first surface that receives at least 90% of the light of the known intensity distribution and has a shape that transforms the known intensity distribution into an intermediate intensity distribution within the transparent material of the lens. A second surface receives the intermediate intensity distribution and is shaped to transform the intermediate intensity distribution into a final intensity distribution that produces a prescribed illumination distribution upon a rectangular target zone. At least one of the shapes of the first and second surfaces is non-rotationally symmetric and is approximated by a super-ellipsoid.
摘要:
A light source emits light into a solid angle exceeding pi steradians with a known intensity distribution. An illumination lens has a first surface that receives at least 90% of the light of the known intensity distribution and has a shape that transforms the known intensity distribution into an intermediate intensity distribution within the transparent material of the lens. A second surface receives the intermediate intensity distribution and is shaped to transform the intermediate intensity distribution into a final intensity distribution that produces a prescribed illumination distribution upon a rectangular target zone. At least one of the shapes of the first and second surfaces is non-rotationally symmetric and is approximated by a super-ellipsoid.