Abstract:
An imaging apparatus includes an imaging optical system that forms an optical signal, an imaging device that includes a plurality of pixels and that converts the optical signal formed on the plurality of pixels into an electrical signal, a color filter that is arranged between the imaging optical system and the imaging device and that has a different optical transmittance for each of the plurality of pixels and each of a plurality of wavelength ranges, and a transmission data compression circuit that compresses the electrical signal obtained by the imaging device. The sum of products of an optical transmittance group relating to a plurality of optical transmittances of the color filter for each of the plurality of pixels in the plurality of wavelength ranges and coefficients common to the plurality of pixels is the same between the plurality of pixels.
Abstract:
Provided are: a point group obtainer that obtains three-dimensional point group data indicating three-dimensional locations of each of a plurality of three-dimensional points included in an imaging space of one or more cameras; a camera parameter calculator that (i) obtains corresponding points, for each of the plurality of three-dimensional points, in individual images captured using the one or more cameras, based on the three-dimensional point group data and an initial camera parameter of each camera, and (ii) calculates a camera parameter of each camera on the basis of the initial camera parameter of each camera and pixel values, included in the individual images, at the corresponding points; and a camera parameter outputter that outputs the calculated camera parameter of each camera.
Abstract:
In an imaging device, a difference calculation unit calculates a differential signal between charge signals that have been accumulated and are held by first and charge holding units with different timings. A multiple sampling unit performs multiple sampling processing on the differential signal, and an analog digital conversion unit converts a signal that has undergone multiple sampling processing to a digital signal. That is, multiple sampling processing is performed on a differential signal with a higher sparsity than that of an image signal.
Abstract:
In an imaging device, a multiple sampling unit performs multiple sampling processing on a charge signal of a captured image, and an analog digital conversion unit converts a signal which has undergone multiple sampling processing to a digital signal. In a reconstruction device, an image reconstruction unit performs reconstruction processing on the digital signal transmitted from the imaging device using information regarding multiple sampling processing transmitted from the imaging device, and obtains an image signal.