Abstract:
A multicoat system on a substrate, comprising at least one radiation-curable coating system (F) and at least one elastic intercoat (D) which is located between substrate and radiation-curable coating system (F) and has a glass transition temperature (Tg) of −20° C. or less.
Abstract:
The present invention relates to a process for preparing functionalized isotactic polystyrene, functionalized isotactic polystyrene which can be prepared by the process of the invention, the use of the functionalized isotactic polystyrene of the invention as macromonomer, a process for preparing a macroinitiator, a macroinitiator which can be prepared by the abovementioned process, the use of the macroinitiator for controlled free-radical polymerization, the use of the functionalized isotactic polystyrene of the invention as macromonomer, preferably in copolymerization with olefins, ROMP with cycloolefins or for coupling with silicone segments, a process for epoxidizing the functionalized isotactic polystyrene of the invention, epoxidized isotactic polystyrene which can be prepared by the abovementioned process and a process for preparing soft thermoplastic elastomers (TPEs) by metathesis polymerization of the functionalized isotactic polystyrene of the invention with suitable polymers which have terminal double bonds and soft thermoplastic elastomers which can be prepared by the process of the invention.
Abstract:
The novel polycrystalline, unoriented or X-ray amorphous carbide, oxide and/or nitride ceramics which have the elemental composition I ##STR1## where M is at least one element from the group consisting of titanium, zirconium, hafnium, thorium, scandium, yttrium, lanthanum, cerium, praseodymium, neodymium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, lutetium, vanadium, niobium, tantalum, chromium, molybdenum, tungsten, manganese, rhenium, iron, cobalt, nickel, ruthenium, rhodium, copper, zinc, magnesium, calcium, strontium, barium, boron, aluminum, gallium, indium, thallium, tin, lead, phosphorus, arsenic, antimony, bismuth and tellurium and x is from 0.01 to 0.7, can be used, in the form of thin layers, as diffusion barriers, anticorrosion layers or interference layers, for protecting surfaces from mechanical abrasion or for protecting magneto-optical recording layers from corrosion. These novel thin polycrystalline, unoriented or X-ray amorphous layers of germanium ceramics can be prepared with the aid of reactive sputtering or reactive magnetron sputtering of a target which consists of the abovementioned elemental composition I.
Abstract:
A magneto-optical recording element comprises(A) an optically transparent dimensionally stable substrate and(B) a thermally alterable recording layer which contains an amorphous lanthanide/transition metal alloy and, at least on the side facing away from the substrate (A), has a 0.1-20 nm thick surface zone containing one or more of the substances carbon, oxygen and nitrogen.
Abstract:
A planar, multilayered, laser-optical recording material comprises(a) a dimensionally stable, optically clear base material composed of a plastics substance and having a structured surface,(b) a superposed intermediate layer which is insoluble in organic solvents and which acts as a diffusion barrier thereagainst, and superposed thereon(c) an amorphous, thermally alterable, dye-containing recording layer producible by application from a solution and drying,wherein said intermediate layer (b)(b.sub.1) is from 5 to 95 nm thick and, based on (b), consists of(b.sub.2) from 88 to 99.5% by weight of an oxide and/or hydrated oxide of one or more of the elements of the group consisting of titanium, zirconium, hafnium, thorium, vanadium, niobium, tantalum, tungsten, aluminum, gallium, indium, silicon, germanium and tin and of(b.sub.3) from 0.5 to 12% by weight of a hydrocarbyl and(b.sub.4) is producible by dissolving one or more alkoxides of one or more of the abovementioned elements in a polar liquid medium essentially comprising a C.sub.1 -C.sub.6 -alkanol, applying this solution to the surface of base material (a) and heat-treating the moist layer obtainable in this way in the presence of water at from 50.degree. to 120.degree. C. for from 5 minutes to 2 hours.
Abstract:
Metallic implants with a coating of hydroxyl apatite are described. Hot isostatic pressing permits pore-free compaction of the hydroxyl apatite layer and results in firm bonding of the layer on the metallic core. The surface of the layer is partially dehydrated by means of ion bombardment, and a bioactive layer for osteogenesis is produced.