摘要:
The present invention relates generally to providing an apparatus for on-site CO2 process fluids management. A standardized and universal platform is described which provides CO2 process fluids at various capacities, purity levels, pressures, temperatures and phases. Moreover, herein is described an apparatus and process for communicating with factory cleaning and automation tools. Finally, the present invention describes novel apparatus and method for treating gas or liquid phase carbon dioxide using a photo-initiated catalytic reaction, a novel self-cooling and self-regenerating bulk phase recycling system for liquid phase carbon dioxide, and a novel quality control technique using on-line fiber optic spectroscopic analysis.
摘要:
A composition for removing organic contaminants, such a flux residues, from a solid substrate comprises: (a) hydrogen peroxide in the amount of about 3 to 5 percent by weight of the composition; (b) an alkaline compound in sufficient amount to provide a pH of at least 10.5 in the composition; (c) about 0.1 to 0.3 percent by weight of a chosen wetting agent which is unreactive with the hydrogen peroxide and the alkaline compound; and (d) purified water as the balance of the composition. Optionally, the composition may further comprise about 0.5 to 2.0 percent by weight of a chosen metal protective agent. The solid substrate having organic contaminants thereon is exposed to the above-noted composition whereby the organic contaminants are removed from the substrate and are converted into non-toxic and non-hazardous products. Thus, negative environmental impact is avoided by the present process. In an alternative embodiment, the organic contaminant removal is further enhanced by exposing the composition and the organic contaminants on the substrate to ultraviolet radiation.
摘要:
A semi-aqueous method for extracting a substance. The method involves combining a first liquid or solid substance containing an extract with a semi-aqueous solution containing a water-soluble or water-emulsifiable (WSWE) compound. Said WSWE compound selectively dissolves extract during a dense phase CO2 expansion and salting-out process, which is simultaneously co-extracted using said dense phase CO2, and desolvated to produce a CO2 salted-out solvent mixture containing extract. Said CO2 salted-out solvent mixture is treated using various secondary processes. The present invention is useful for producing extracts for use as additives in pharmaceuticals, nutraceuticals, cosmetics, beverages, or foods, and for quantitative analysis.
摘要:
An electrostatic spray application apparatus and method for producing an electrostatically charged and homogeneous CO2 composite spray mixture containing an additive and simultaneously projecting at a substrate surface. The spray mixture is formed in the space between CO2 and additive mixing nozzles and a substrate surface. The spray mixture is a composite fluid having a variably-controlled aerial and radial spray density comprising pressure- and temperature-regulated propellant gas (compressed air), CO2 particles, and additive particles. There are two or more circumferential and high velocity air streams containing passively charged CO2 particles which are positioned axis-symmetrically and coaxially about an inner and lower velocity injection air stream containing one or more additives to form a spray cluster. The axis-symmetrical CO2 particle-air streams are passively tribocharged during formation, and the spray clustering arrangement creates a significant electrostatic field and Coanda air mass flow between and surrounding the coaxial flow streams.
摘要:
A method for simultaneously ablating and functionalizing a portion of a substrate surface, comprising the following steps: applying a CO2 particle spray against an unreacted portion of the substrate surface; and simultaneously projecting at least one source of ionizing-heating radiation into said CO2 particle spray flowing against said unreacted portion of the substrate surface, thus intersecting and mixing together to form an instantaneous surface treatment composition of ionizing-heating radiation and CO2 particle spray flowing against the substrate surface, and to form and remove a reacted portion of the substrate surface.
摘要:
A method of forming a machining spray for treating a surface of a substrate during a machining process includes providing a first component containing solid carbon dioxide particles. A second provided component is derived from an inert gas having a temperature range from 305 K to about 477 K prior to being mixed with the solid carbon dioxide particles. The first component and the second component are combined to form the cryogenic fluid composition prior to contacting the substrate. An optional additive may be mixed with the solid carbon dioxide particles or the inert gas. The cryogenic fluid composition exhibits synergistically enhanced physicochemical properties of each component not observed prior to the combination thereof, wherein the fluid imparts enhanced cooling, heating or lubrication effects.
摘要:
A method of forming a plasma to physicochemically modify properties of a fluid spray in a substrate treatment processes includes providing an applicator in proximity to the substrate. The applicator comprises an electrically insulated main body portion containing a cavity, a tube axially positioned within the cavity for transporting a first fluid, an annular electric-field generator positioned within the cavity between the main body portion and the tube, a region between the tube and the generator for transporting a second fluid, and a nozzle connected to the main body portion for mixing the first fluid with the second fluid to form the fluid spray. The tube, the nozzle or the substrate are selectively grounded. Upon activating the electric-field generator, plasma is formed within the tube or about the region between the tube and the generator when the tube is grounded, within the nozzle when the nozzle is grounded or between the nozzle and the substrate when the substrate is grounded.
摘要:
A method of forming a plasma to physicochemically modify properties of a fluid spray in a substrate treatment processes includes providing an applicator in proximity to the substrate. The applicator comprises an electrically insulated main body portion containing a cavity, a tube axially positioned within the cavity for transporting a first fluid, an annular electric-field generator positioned within the cavity between the main body portion and the tube, a region between the tube and the generator for transporting a second fluid, and a nozzle connected to the main body portion for mixing the first fluid with the second fluid to form the fluid spray. The tube, the nozzle or the substrate are selectively grounded. Upon activating the electric-field generator, plasma is formed within the tube or about the region between the tube and the generator when the tube is grounded, within the nozzle when the nozzle is grounded or between the nozzle and the substrate when the substrate is grounded.
摘要:
The present invention generally relates to a method and apparatus to produce and apply a variety of surface cleaning and modification spray treatments. More specifically, the present invention provides the simultaneous steps of selectively removing one or more unwanted surface contaminants, including extremely hard coatings, exposing a native clean surface layer and modifying said exposed and cleaned native substrate surface layer to energetic radicals and radiation to improve adhesion, wettability or coatability. Reactive species in combination with non-reactive, but chemically or physically active, species provide a reaction control and surface treatment environment by which contaminants and surface interlayers are oxidatively, physically and/or chemically removed or modified to prepare an underlying substrate surface for subsequent bonding, deposition, coating and curing operations. Substrates treated in accordance with the present invention have cleaner and higher surface free energy surfaces.
摘要:
The present invention includes a nozzle device and method for forming a composite fluid. The nozzle device generally comprises a nozzle portion connected to a main body. The main body includes an inner axial bore extending therethrough. An annular wall extends radially therefore and an annulus extends from an outer perimeter of the annular wall. The annulus and the annular wall define an annular chamber at least partially open to the atmosphere. A portal fluidly communicates the bore with the annular chamber. The nozzle portion includes a converging nose section also having an internal axial bore extending therethrough. An annular collar extends from the nose section and disposes at least partially within the annular chamber. A first tube for transporting a first fluid disposes within the axial bore of the main body and nose section, terminating at an exit port of the nozzle section. A second tube for transporting a second fluid disposes within the axial bore of the main body, terminating proximate the portal. A propellant fluid introduced under pressure into the bore of the main body directs the second fluid exiting the second tube into the annular chamber through the portal. Upon entering the annular chamber, the propellant fluid and the second fluid pass about the annular collar and travel along an outer surface of the nose section toward the exit port. The propellant fluid and the second fluid admix with the first fluid exiting the first tube and exit port to form the composite fluid outside the nozzle.