Abstract:
A wireless device includes: a first radio and first transceiver configured to transmit and receive according to a first radio access technology; a second radio and second transceiver configured to transmit and receive according to a second radio access technology; a first antenna and a second antenna connected to the first radio and the second radio; a switch; and a control unit configured to control the switch to configure connections of the first and second antennas to the first and second radios. The control unit is configured to control the switch to disconnect the second radio from the second antenna in response to a receiving, by the second radio through the second antenna, a signal that is below a predetermined threshold, and to connect the second radio to the first antenna during a wakeup period of the second radio.
Abstract:
Aspects of the methods and apparatus relate to improving the overall decision quality of the Fractional-Dedicated Physical Channel (F-DPCH) channel. One aspect of the methods and apparatus relates to detecting bad channel conditions of a serving base station and improving the serving base station F-DPCH decoding performance in such bad conditions based on the serving base station signal-to interference ratio (SIR) estimation. Another aspect of the methods and apparatus relate to improving the overall decision quality of the F-DPCH channel in soft handover (HO) scenarios by increasing the non-serving base station F-DPCH channel rejections thresholds based on certain SIR estimations. The F-DPCH channel rejections thresholds are based on either the SIR of the non-serving base station, or a difference between non-serving base station SIR and serving base station SIR.
Abstract:
This disclosure provides systems, methods, and apparatus for antenna switching for simultaneous communication. In one embodiment, a wireless communication apparatus is provided. The wireless communication apparatus includes a plurality of antennas including a first antenna and a second antenna. The wireless communication apparatus further includes a plurality of receive circuits including a first receive circuit. The wireless communication apparatus further includes a controller configured to determine one or more performance characteristics of the first antenna over a plurality of sources. The controller is further configured to selectively switch the first receive circuit from receiving wireless communications via the first antenna to receive wireless communications via the second antenna if the one or more performance characteristics of the first antenna over the plurality of sources fall simultaneously. Other aspects, embodiments, and features are also claimed and described.
Abstract:
This disclosure provides systems, methods, and apparatus for antenna switching for simultaneous communication. One apparatus embodiment includes a plurality of antennas including a first antenna, a second antenna, and a third antenna. The wireless communication apparatus further includes a plurality of receive circuits including a first receive circuit, at least two of the plurality of receive circuits each configured to simultaneously receive, with respect to the other, wireless communications from a different one of at least two networks relating to different radio access technologies. The wireless communication apparatus further includes a controller configured to selectively switch the first receive circuit from receiving wireless communications via the first antenna to receive wireless communications via the second antenna based on one or more performance characteristics of at least one of the first antenna and the second antenna. Other aspects, embodiments, and features are also claimed and described.
Abstract:
Disclosed are methods and apparatus for rejecting unreliable downlink (DL) transmit power control (TPC) commands based on signal-to-interference-ratio estimates (SIRE). The method includes receiving by a user equipment (UE) a DL transmit power control (TPC) command from a base station; calculating a signal-to-interference ratio estimate (SIRE) for the DL channel; determining a scaling factor for a DLTPC rejection threshold based on the DL channel SIRE; adjusting the DLTPC rejection threshold based on the determined scaling factor; and rejecting or accepting the DLTPC command based on the adjusted DLTPC rejection threshold.