摘要:
A route from a source node to a destination is discovered in an ad hoc network by having the source node generate a data packet including its source address, the destination address, and a field indicating that the source node requests route information from the source node to the destination node. The data packet is forwarded through the network until the data packet is received by the destination node. In response, the destination node generates a route reply packet including the route information. The route information can include a cost. The route reply packet is forwarded through the network until the route reply packet is received by the source node. During the forwarding, multiple route reply packets can be generated with different costs. The source node can then make cost calculations to select a best route based on the costs.
摘要:
A method classifies a mobile terminal by a-periodically obtaining locations of the mobile terminal. Location update intervals are determined from update times associated with the locations. Frequency characteristics are generated from the location update intervals, and a probability distribution function is generated from the location update interval. Then, the mobile terminal is classified according to the frequency characteristics and the probability distribution function.
摘要:
At least one parameter of a signal is determined, wherein the signal is a sinusoidal signal including noise, wherein the parameter includes at least one of a frequency of the signal, and an angle of a phase of the signal. The frequency of the signal is determined iteratively based on a linear relationship among the frequency of the signal, samples of the noise, and samples of the signal using a statistical correlation among the samples of the noise. During a current iteration the statistical correlation is updated based on the frequency of the signal determined during a previous iteration, and the samples of the signal are updated with values of the signal during a current period of time.
摘要:
A battery is charged by first charging the battery at a constant current during a first time interval, and then charging the battery at a varying current during a second time interval. The battery can be a lithium-ion battery, and the charging uses a kinetic model. The kinetic model models the battery having an indiffused well having a capacity c, and a diffused well having a capacity 1−c, and the indiffused well is filled directly by the current, and the diffused well is filled only from the indiffused well via a valve with constant inductance.
摘要:
In a wireless network including a server and clients, network resources, such as time slots and channel frequencies, are managed by having the server define the resources for future use by the clients, while the clients actually allocate the resources for their exclusive use according to performance criteria determined by the clients. The network can be ad-hoc and in industrial environments with low-latency requirements.
摘要:
A method surpresses clutter in a space-time adaptive processing system. The method achieves low-complexity computation via two steps. First, the method utilizes an improved fast approximated power iteration method to compress the data into a much smaller subspace. To further reduce the computational complexity, a progressive singular value decomposition (SVD) approach is employed to update the inverse of the covariance matrix of the compressed data. As a result, the proposed low-complexity STAP procedure can achieve near-optimal performance with order-of-magnitude computational complexity reduction as compared to the conventional STAP procedure.
摘要:
A method and system access a channel in a wireless network of nodes. A coordinator transmits periodically a beacon, in which time between two consecutive beacons constitute a beacon interval. The coordinator and other nodes transceive a superframe during the beacon interval, in which the superframe begins with an active interval, which is immediately followed by an inactive interval, and in which the active interval begins with a contention free period, which is immediately followed by a contention access period, which is immediately followed by the inactive interval.
摘要:
A method estimates a delay in a time of arrival (TOA) of a transmitted signal by receiving the transmitted signal at multiple antennas via corresponding channels. Each received signal is correlated with the transmitted signal to obtain estimated channel coefficients and an estimated TOA. A variance of noise is also obtained for each received signal. A weight is determined for each received signal by dividing the channel coefficients by the variance of the noise. The weights are summed, and each weight is multiplied by the estimated TOA to produce a weighted estimated TOA, which are also summed. The summed weighted estimated TOA are divided by the summed weights to determine a final TOA estimate with respect to the transmitted signal.
摘要:
A method and system provide multiple-access control and frequency band allocation, and transmission time sharing among multiple users in orthogonal frequency-division multiple-access (OFDMA) and time-division multiple-access (TDMA) networks. The method can be applied to uplinks and downlinks of multi-user, multi-carrier communication networks. Under a total transmission-power minimization constraint, the method can allocate carriers and transmission time to users optimally, and at the same time, can guarantee a data rate or equivalently a latency requirement of each user.
摘要:
A method and system locates a position of a transceiver in a cooperative relay network of nodes. A primary node broadcasts a range request (RREQ) message. A target node, in response to receiving the RREQ message, broadcasts a range reply (RREP) message, wherein the RREP message includes a time difference between receiving the RREQ message and broadcasting the RREP message. A secondary node, in response to receiving the RREQ message and the RREP message, broadcasts a range data (RDAT) message, wherein the RDAT message includes a time difference between receiving the RREQ message and the RREP message. Then, a position solver can determine a location of the target node based on the time differences in the RREP message and the RDAT message.