Abstract:
A two-step self-servowriting process first writes an intermediate pattern based on a reference pattern, and then writes a final pattern based on the intermediate pattern, wherein the reference pattern can be a printed media or a spiral pattern. Such an approach can be utilized to reduce the noise/runout, eliminate timing eccentricity, and increase the sample rate of the final pattern. In addition, a disk drive containing multiple rotatable disks can perform two-step self servowriting using either a per-cylinder process to further improve written-in runout. In such a process, intermediate servo patterns can be written via each head in the drive, and the final servo patterns can be written and/or re-written via each head at one time based on an optimal intermediate pattern. This description is not intended to be a complete description of, or limit the scope of, the invention. Other features, aspects, and objects of the invention can be obtained from a review of the specification, the figures, and the claims.
Abstract:
Systems and data storage devices in accordance with embodiments of the present invention can execute instructions to determine a width of a data stroke along a rotatable medium. In one embodiment, the width can be determined by measuring a distance from a marker zone edge of a template pattern on the rotatable medium to a ramp positioned adjacent to the rotatable medium or near the inner diameter of the rotatable medium, and measuring a distance from the marker zone edge to a crash stop. A track layout can be determined based on the width of the data stroke.
Abstract:
The amount of position error written into a servo burst pattern can be reduced by using additional media revolutions to write the pattern. Where the edges of two servo bursts are used to define a position on the media, trimming the first burst and writing the second burst on separate revolutions will result in a different amount of position error being written into each burst. The end result will be a reduction in the overall error in position information. In order to further reduce the position error given by a burst pair, each burst also can be trimmed and/or written in multiple passes. This description is not intended to be a complete description of, or limit the scope of, the invention. Other features, aspects, and objects of the invention can be obtained from a review of the specification, the figures, and the claims.
Abstract:
To account for head misplacement while servowriting, conditional writing and/or trimming of servo information can be used. Conditional servowriting allows servowriting to be disabled when it is determined that servo information will not be written and/or trimmed at a desired location or within a threshold distance of a desired location. For example, if a distance between a write element or a predicted location of servo information and a desired location of the servo information or write element exceeds a threshold, writing and/or trimming can be inhibited. Servowriting can be resumed when it is determined that servo information will be written or trimmed at a desired location or within a threshold distance of a desired location. A servowriting step or pass is not re-started when the threshold is exceeded and those wedges for which servo information was not written and/or trimmed can be attempted during subsequent revolutions of the rotatable storage medium. Various methods can also be used to account for servo information that is not written and/or trimmed after a number of revolutions, including increasing threshold(s), writing and/or trimming unconditionally, and re-computing WORF values for a reference disk. Additionally, other techniques including write current variation and individual passes for writing and trimming can be used with various embodiments using conditional writing techniques.
Abstract:
To account for head misplacement while servowriting, conditional writing and/or trimming of servo information can be used. Conditional servowriting allows servowriting to be disabled when it is determined that servo information will not be written and/or trimmed at a desired location or within a threshold distance of a desired location. For example, if a distance between a write element or a predicted location of servo information and a desired location of the servo information or write element exceeds a threshold, writing and/or trimming can be inhibited. Servowriting can be resumed when it is determined that servo information will be written or trimmed at a desired location or within a threshold distance of a desired location. A servowriting step or pass is not re-started when the threshold is exceeded and those wedges for which servo information was not writtten and/or trimmed can be attempted during subsequent revolutions of the rotatable storage medium.
Abstract:
A rotatable media storage device operates using multiple disk spin-speeds, e.g., a reduced spin-speed and a nominal spin-speed. A disk is spun up to a reduced spin-speed and an initial data transfer is began while the disk spins at the reduced spin-speed, if an amount of work that has been requested is below a threshold. The disk is spun up to a further spin-speed (e.g., a nominal spin-speed), which is greater than the reduced spin-speed, and the initial data transfer is began while the disk spins at the further spin-speed, if the amount of work that has been requested is above the threshold. Alternative embodiments using multiple disk spin-speeds are also provided.
Abstract:
Methods for searching for a servo address mark (SAM) pattern using multiple sets of servo demodulation detection parameters are provided. A SAM pattern is searched for using a first set of servo demodulation detection parameters. The SAM pattern is also searched for using a second set of servo demodulation parameters, wherein at least one servo demodulation parameter in the second set is different than a corresponding parameter in the first set. Example servo demodulation parameters include staring servo automatic gain control (AGC) values and starting servo phase lock loop (PLL) values.
Abstract:
A disk drive includes a disk having a first servo burst written with advancing phase as a radial distance on the disk increases, and a second servo burst written with decreasing phase as a radial distance on the disk increases, and a transducing head, and a read channel. The disk drive also includes an element for shifting the phase of the signal produced by the first burst pattern with respect to the signal produced by the second burst pattern by an amount sufficient to substantially cancel distortion in a signal produced by the first servo burst with distortion in a signal produced by the second servo burst when the signal from the first servo burst is added to the signal from the second servo burst.
Abstract:
The amount of position error written into a servo burst pattern can be reduced by using additional media revolutions to write the pattern. Where servo bursts are used to define a position on the media, trimming a first burst and writing a second burst on separate revolutions of the media will result in a different amount of position error being written into each burst. The end result will be a reduction in the overall error in position information. In order to further reduce the position error given by a combination of bursts, each burst also can be trimmed and/or written in multiple passes. The overall error in position should decrease as the number of passes used to write a burst combination increases. This description is not intended to be a complete description of, or limit the scope of, the invention. Other features, aspects, and objects of the invention can be obtained from a review of the specification, the figures, and the claims.
Abstract:
An electronic storage device provides rapid data availability. The rapid data availability relates to sequences of reads and writes performed by the ESD responsive to critical events, such as power-up sequences or sequences of read and/or write operations. A sequence of reads is performed upon detecting a critical event. A record of reads to be performed is maintained in a reserved area of the disk. In the case of similar but different events, such as host power-up from an off state and host power-up from a hibernation state, different read and write sequences are performed for each scenario. Improvements to the sequence of reads and/or writes may be determined, thereby enabling the ESD to improve its response to critical events over time.