Abstract:
According to one embodiment, a magnetic disk device comprises a disk, a first head, a second head, a controller. The disk includes a first surface and a second surface different from the first surface. The first head carries out read and write of data from and to the first surface. The second head carries out read and write of data from and to the second surface. The controller adjusts a spiral speed of at least one of the first head and the second head according to a cylinder offset amount corresponding to a positional difference between the first head and the second head. The spiral speed is a speed at which spiral servo patterns are to be written.
Abstract:
According to one embodiment, servo patterns different in servo pattern frequency are recorded in zones divided in a radial direction on a magnetic disc, and the servo patterns in the adjacent zones overlap each other in a predetermined area from a zone servo boundary between the zones, and a determination boundary where it is determined to execute a crossing process is set within the overlapping area of the servo patterns upstream from the zone servo boundary, based on position information on a seek destination and the present position of the magnetic head.
Abstract:
A data storage device may have increased signal-to-noise ratio contact detection by employing a transducing head associated with a data storage medium each connected to a controller. The transducing head can have an alternating current heater excited to a first frequency for a first revolution of the data storage medium and to a different second frequency for a second revolution of the data storage medium. The second frequency may produce lateral transducing head motion as a result of physical contact of the transducing head with the data storage medium. The controller can issue a contact status in response to comparing a first plurality of position error signals logged during the first frequency to a second plurality of position error signals logged during the second frequency.
Abstract:
A storage device disclosed herein stores data on a storage media using interlaced magnetic recording (IMR) and it includes a storage controller configured to determine power levels applied to the power source such that power levels applied to heat various tracks can be different from each other. An implementation of the storage device determines the track density, linear densities and power levels for even and odd tracks in IMR HAMR for the storage media.
Abstract:
A storage device includes a controller that implements an interlaced magnetic recording scheme with prioritized random access. According to one implementation, a controller is configured to write data at a first linear density to alternating data tracks and write data at a second linear density to one or more data tracks interlaced with the alternating data tracks.
Abstract:
A storage device disclosed herein stores data on a storage media using interlaced magnetic recording (IMR) and it includes a storage controller configured to determine power levels applied to the power source such that power levels applied to heat various tracks can be different from each other. An implementation of the storage device determines the track density, linear densities and power levels for even and odd tracks in IMR HAMR for the storage media.
Abstract:
A device may be provided. The device includes a media including a servo layer and a data recording layer, and a recording head including a dimension sized to produce a magnetic writing field to write servo information on the servo layer.
Abstract:
A disk drive is disclosed comprising a disk surface comprising a radius, a head operable to generate a read signal, and a voice coil motor (VCM) operable to actuate the head over the disk surface. A back electromotive force (BEMF) voltage generated by the VCM is measured. The VCM is controlled to move the head over substantially the entire radius of the disk surface in response to the BEMF voltage, and while moving the head the read signal from the head is processed to detect residual data recorded on the disk surface after erasing the disk surface.
Abstract:
An apparatus includes a write pole, a waveguide adjacent to the write pole, the waveguide having a truncated end, and a blocking layer positioned adjacent the truncated end and extending from one side of the waveguide across a portion of an aperture at the truncated end. The waveguide can be a solid immersion mirror or a channel waveguide.
Abstract:
Methods, systems and computer program products for detecting an end of a reference spiral band are described. A first portion of servo information may be written on a disk using the reference spiral band. By detecting an end of a reference spiral band, a new reference spiral band may be launched. A read/write head of a hard disk drive may subsequently use the new spiral band to write the remaining portion of the servo information, which aids the writing of data tracks on the disk.