Abstract:
The embodiments of the present invention establish a sound production model of the storage drive and/or the host in which it is embedded, wherein the model represents the correlation between the current excitation to the storage drive and the acoustic response of the storage drive and/or the host produces. By monitoring and modeling the acoustic response in real time, the invention is operable to optimize/change the sound production of the storage drive and/or the host by tuning a plurality of parameters of the model and the storage drive controller. This description is not intended to be a complete description of, or limit the scope of, the invention. Other features, aspects, and objects of the invention can be obtained from a review of the specification, the figures, and the claims.
Abstract:
A two-step self-servowriting process first writes an intermediate pattern based on a reference pattern, and then writes a final pattern based on the intermediate pattern, wherein the reference pattern can be a printed media or a spiral pattern. Such an approach can be utilized to reduce the noise/runout, eliminate timing eccentricity, and increase the sample rate of the final pattern. This description is not intended to be a complete description of, or limit the scope of, the invention. Other features, aspects, and objects of the invention can be obtained from a review of the specification, the figures, and the claims.
Abstract:
The amount of position error written into a servo burst pattern can be reduced by using additional media revolutions to write the pattern. Where the edges of two servo bursts are used to define a position on the media, trimming the first burst and writing the second burst on separate revolutions of the media will result in a different amount of position error being written into each burst. The end result will be a reduction in the overall error in position information. In order to further reduce the position error given by a burst pair, each burst also can be trimmed and/or written in multiple passes. Additional bursts can also be written, such as for each data track centerline. The overall error in position should decrease as the number of passes used to write a burst pair increases. Also, additional bursts can be written in separate passes in order to further reduce position error while avoiding coherence concerns. This description is not intended to be a complete description of, or limit the scope of, the invention. Other features, aspects, and objects of the invention can be obtained from a review of the specification, the figures, and the claims.
Abstract:
The amount of position error written into a servo burst pattern can be reduced by using additional media revolutions to write the pattern. Where the edges of two servo bursts are used to define a position on the media, trimming the first burst and writing the second burst on separate revolutions will result in a different amount of position error being written into each burst. The end result will be a reduction in the overall error in position information. In order to further reduce the position error given by a burst pair, each burst also can be trimmed and/or written in multiple passes. This description is not intended to be a complete description of, or limit the scope of, the invention. Other features, aspects, and objects of the invention can be obtained from a review of the specification, the figures, and the claims.
Abstract:
Embodiments of the present invention determine the offset of a first burst of a burst pair from a centerline. This can be used to determine the desired offset position for a second burst of the burst pair. The target signal to provided the data storage unit for writing the second burst can take into account the transfer function of the controller and the physical plant so as to more accurately write at the desired offset position.
Abstract:
Systems are provided for improving servo-demodulation robustness, especially when used with a disk having zone bit recorded servo wedges. The systems include a first servo demodulator adapted to search for a servo address mark (SAM) pattern, within a servo wedge, at a first nominal frequency useful for searching for the SAM pattern if the servo wedge is within a first zone. The systems also include a second servo demodulator adapted to search for the SAM pattern, within the same servo wedge, at a second nominal frequency useful for searching for the SAM pattern if the servo wedge is within the second zone. A microprocessor can then determine which of the first and second zones a head is reading, based at least in part on which of the first and second demodulators detects the SAM pattern.
Abstract:
Embodiments of the present invention enables the trimming and writing of servo bursts in a null burst servo pattern as multiple portions in multiple passes while still demodulating each of the servo bursts as a single burst to obtain PES. Alternatively, the servo bursts can be trimmed and written using different currents in different passes respectively so that a gap can be created in the radial direction between the servo bursts. This description is not intended to be a complete description of, or limit the scope of, the invention. Other features, aspects, and objects of the invention can be obtained from a review of the specification, the figures, and the claims.
Abstract:
A two-step self-servowriting process first writes an intermediate pattern based on a reference pattern, and then writes a final pattern based on the intermediate pattern, wherein the reference pattern can be a printed media pattern. Such an approach can be utilized to reduce the noise/runout, eliminate timing eccentricity, and increase the sample rate of the final pattern. In addition, a disk drive containing multiple rotatable disks can perform two-step self servowriting using either a per-head self-servowriting process to further improve written-in runout. In such a process, intermediate servo patterns can be written via each head in the drive, and the final servo patterns can be written and/or re-written via each head either individually. This description is not intended to be a complete description of, or limit the scope of, the invention. Other features, aspects, and objects of the invention can be obtained from a review of the specification, the figures, and the claims.
Abstract:
The amount of position error written into a servo burst pattern can be reduced by using additional media revolutions to write the pattern. Where the edges of two servo bursts are used to define a position on the media, trimming the first burst and writing the second burst on separate revolutions will result in a different amount of position error being written into each burst. The end result will be a reduction in the overall error in position information. In order to further reduce the position error given by a burst pair, each burst also can be trimmed and/or written in multiple passes. This description is not intended to be a complete description of, or limit the scope of, the invention. Other features, aspects, and objects of the invention can be obtained from a review of the specification, the figures, and the claims.
Abstract:
The amount of position error written into a servo burst pattern can be reduced by using additional media revolutions to write the pattern. Where the edges of two servo bursts are used to define a position on the media, trimming the first burst and writing the second burst on separate revolutions will result in a different amount of position error being written into each burst. The end result will be a reduction in the overall error in position information. In order to further reduce the position error given by a burst pair, each burst also can be trimmed and/or written in multiple passes. Additional bursts can also be written, such as for each data track centerline. This description is not intended to be a complete description of, or limit the scope of, the invention. Other features, aspects, and objects of the invention can be obtained from a review of the specification, the figures, and the claims.