Abstract:
The present invention relates to a process for the continuous preparation of a polyolefin in a reactor from one or more α-olefin monomers of which at least one is ethylene or propylene, wherein the reactor comprises a fluidized bed, an expanded section located at or near the top of the reactor, a distribution plate located at the lower part of the reactor and an inlet for a recycle stream located under the distribution plate, wherein the process comprises—feeding a polymerization catalyst to the fluidized bed in the area above the distribution plate—feeding the one or more α-olefin monomers to the reactor—withdrawing the polyolefin from the reactor—circulating fluids from the top of the reactor to the bottom of the reactor, wherein the circulating fluids are cooled using a heat exchanger, resulting in a cooled recycle stream comprising liquid, and wherein the cooled recycle stream is introduced into the reactor using the inlet for the recycle stream wherein a stream comprising a thermal run away reducing agent (TRRA-containing stream) is introduced into the expanded section during at least part of the polymerization process, wherein said TRRA-containing stream is brought into contact with at least part of the interior surface of the expanded section.
Abstract:
The invention relates to a system for the continuous polymerization of α-olefin monomers comprising a reactor, a compressor, a cooling unit and an external pipe, wherein the reactor comprises a first outlet for a top recycle stream, wherein the system comprises apparatus, wherein the reactor comprises a first inlet for receiving a bottom recycle stream, wherein the reactor comprises an integral separator, wherein the first inlet of the integral separator is connected to a first outlet, wherein the first outlet for the liquid phase is connected to the second outlet of the reactor for the liquid phase, wherein the external pipe comprises a second inlet for receiving a solid polymerization catalyst, wherein the first outlet of the external pipe is connected to a second inlet of the reactor, wherein the reactor comprises a third outlet, wherein the system comprises a first inlet for receiving a feed.
Abstract:
The invention is directed to a polyethylene composition comprising 20-90 wt % of a LLDPE A and 80-10 wt % of a LLDPE B, wherein i) LLDPE A is obtainable by a process for producing a copolymer of ethylene and another α-olefin in the presence of an Advanced Ziegler-Natta catalyst, ii) LLDPE B is obtainable by a process for producing a copolymer of ethylene and another α-olefin in the presence of a metallocene catalyst.
Abstract:
The invention relates to a multi-zone reactor for the continuous fluidized bed polymerization of one or more α-olefin monomers of which at least one is ethylene or propylene, which multi-zone reactor is operable in condensed mode, which multi-zone reactor comprises a first zone, a second zone, a third zone, a fourth zone and a distribution plate, wherein the second zone contains an inner wall, wherein the third zone contains an inner wall, wherein at least part of the inner wall of the third zone is either in the form of a gradually increasing inner diameter or a continuously opening cone, wherein the diameter or the opening increases in the vertical direction towards the top of the multi-zone reactor, wherein the largest diameter of the inner wall of the third zone is larger than the largest diameter of the inner wall of the second zone.
Abstract:
The invention relates to a process for the continuous polymerization α-olefin monomers comprising: feeding the α-olefins to a vertically extended reactor for the continuous fluidized bed polymerization of α-olefin monomers, wherein the reactor comprises a distribution plate and an integral gas/liquid separator, withdrawing the polyolefin from the reactor, withdrawing fluids from the reactor, cooling the fluids to below their dew point, resulting in a bottom recycle stream, (5) introducing the bottom recycle stream, separating at least part of the liquid from the bottom recycle stream, feeding a liquid phase to an external pipe, adding a solid polymerization catalyst to the liquid phase in the external pipe and (9) feeding a slurry stream comprising the prepolymer and/or polymer into the reactor, wherein the prepolymer and/or polymer are present in the slurry stream in an amount of 0.01 to 99 wt % based on the total slurry stream upon introduction into the reactor.