Abstract:
A display device and a driving method thereof are disclosed. In one aspect, the display device includes a display panel including a plurality of pixel rows, a data driver configured to transfer data voltages to the display panel, a gate driver configured to transfer gate signals to the display panel, and a signal controller configured to control the data driver and the gate driver. The pixel rows are divided into i (i is a natural number of 2 or more) pixel row groups including a plurality of pixel rows, respectively. The display panel displays one still image for one frame set including the i sequential frames, and each of the i pixel row groups is charged by receiving the data voltage for each frame of the frame set, and the frames in which the i pixel row groups are charged are different from each other.
Abstract:
A display device includes gate lines, data lines, pixels connected to the gate lines and data lines, a data driver, a gate driver, and a signal controller for controlling the data driver and gate driver. A method for driving the display device includes: compressing, by the signal controller, vertical resolution of input image data of each frame by k or receiving by the signal controller the compressed input image data; processing by the signal controller the compressed input image data to generate output image data; generating, by the data driver, data voltages based on the output image data and applying the data voltages to the data lines; and applying, by the gate driver, gate-on voltage pulses concurrently to k neighboring gate lines corresponding to the applied data voltages. Starting times of the gate-on voltage pulses of at least two of the k neighboring gate lines are different from each other.
Abstract:
A multiview image displaying system is provided. The multiview image displaying system includes: a display panel, a shutter panel, a shutter panel, and glasses. The display panel is for displaying images for different viewpoints by time division and includes a first polarizer. The shutter panel is provided in front of the display panel and includes an active shutter panel and a phase retardation plate. The glasses are for observing the images. The glasses are selected from among polarized glasses and shutter glasses.
Abstract:
A stereoscopic image display device includes a barrier panel that includes a first barrier panel configured to partially reflect light, and a second barrier panel provided on the first barrier panel configured to partially absorb light. Each of the first barrier panel and the second barrier panel includes an electrochromic element and electrodes respectively provided on opposite surfaces of the electrochromic element.
Abstract:
A 3D image display device includes a display unit including a display panel and an optical panel located at a front side of the display panel and changing a path of light. A controller is configured to generate a signal for controlling the display unit. The controller includes an image signal processor which generates an input image signal based on image information containing 2D image information and depth information. The image signal processor generates a 3D image signal based on the 2D image information and the depth information. The image signal processor extracts a low-depth area having a small depth and generates a 2D image signal corresponding to the low-depth area. The display unit displays the low-depth area by a 2D image.
Abstract:
A display device and a driving method thereof are disclosed. In one aspect, the display device includes a display panel including a plurality of pixel rows, a data driver configured to transfer data voltages to the display panel, a gate driver configured to transfer gate signals to the display panel, and a signal controller configured to control the data driver and the gate driver. The pixel rows are divided into i (i is a natural number of 2 or more) pixel row groups including a plurality of pixel rows, respectively. The display panel displays one still image for one frame set including the i sequential frames, and each of the i pixel row groups is charged by receiving the data voltage for each frame of the frame set, and the frames in which the i pixel row groups are charged are different from each other.