Abstract:
A display device and a driving method thereof are disclosed. In one aspect, the display device includes a display panel including a plurality of pixel rows, a data driver configured to transfer data voltages to the display panel, a gate driver configured to transfer gate signals to the display panel, and a signal controller configured to control the data driver and the gate driver. The pixel rows are divided into i (i is a natural number of 2 or more) pixel row groups including a plurality of pixel rows, respectively. The display panel displays one still image for one frame set including the i sequential frames, and each of the i pixel row groups is charged by receiving the data voltage for each frame of the frame set, and the frames in which the i pixel row groups are charged are different from each other.
Abstract:
A display device includes a display panel and a liquid crystal lens panel disposed on the display panel. The liquid crystal lens panel includes first and second substrates, first and second electrode layer and a liquid crystal layer interposed between the first and second electrode layers. The first and second substrates face each other. The first electrode layer is disposed on the first substrate. The first electrode layer includes first linear electrodes and second linear electrodes that extend in a first direction. The second electrode layer is disposed on the second substrate. A predetermined common voltage is applied to the second electrode layer. The first and second linear electrodes are spaced apart from each other. Driving voltages are independently applied to the first and second linear electrodes.
Abstract:
A display device and a driving method thereof are disclosed. In one aspect, the display device includes a display panel including a plurality of pixel rows, a data driver configured to transfer data voltages to the display panel, a gate driver configured to transfer gate signals to the display panel, and a signal controller configured to control the data driver and the gate driver. The pixel rows are divided into i (i is a natural number of 2 or more) pixel row groups including a plurality of pixel rows, respectively. The display panel displays one still image for one frame set including the i sequential frames, and each of the i pixel row groups is charged by receiving the data voltage for each frame of the frame set, and the frames in which the i pixel row groups are charged are different from each other.
Abstract:
Disclosed is a display device that can rapidly recover from a fail situation. The display device includes: a display panel; a source drive IC configured to supply a data signal to the display panel and including a calibrating unit; a timing controller configured to supply a data control signal and a frame data to the source drive IC; and a common bus line formed between the source drive IC and the timing controller. The calibrating unit sets and stores a calibration value in response to the data control signal during an initialization period before receiving the frame data from the timing controller, and transmits the calibration value to the timing controller through the common bus line.
Abstract:
An optical system includes: a first panel including a plurality of first electrodes extending in a first direction; a second panel facing the first panel and including a plurality of second electrodes extending in a second direction crossing the first direction; an optical conversion layer between the first panel and the second panel; and a first insulating layer between the first electrodes and the second electrodes, the first insulating layer including an organic material, wherein, in a touch mode, one or more of the first electrodes and one or more of the second electrodes crossing each other form a touch sensing capacitor, and wherein, in a multi-view mode, the first electrodes and the second electrodes apply an electric field to the optical conversion layer, the electric field depending on a voltage difference between the first electrode and the second electrode, to generate different phase differences.
Abstract:
A stereoscopic image display device includes a barrier panel that includes a first barrier panel configured to partially reflect light, and a second barrier panel provided on the first barrier panel configured to partially absorb light. Each of the first barrier panel and the second barrier panel includes an electrochromic element and electrodes respectively provided on opposite surfaces of the electrochromic element.
Abstract:
A display device includes a display panel configured to receive a first-frame image signal for displaying a first-frame image in a first frame. The display panel is further configured to receive a second-frame image signal for displaying a second-frame image in a second frame that immediately follows the first frame such that the display panel appears to display a transition region associated with a boudary between a portion of the first-frame image and a portion of the second-frame image and moving in a moving direction. The display device further includes an optical effect layer and electrode sets. The electrode sets respectively overlap different portions of the optical effect layer and are configured for sequentially starting affecting the different portions of the optical effect layer such that the optical effect layer appears to display a light-blocking section that moves in the moving direction and overlaps the transition region.
Abstract:
An optical system includes: a first panel including a plurality of first electrodes extending in a first direction; a second panel facing the first panel and including a plurality of second electrodes extending in a second direction crossing the first direction; an optical conversion layer between the first panel and the second panel; and a first insulating layer between the first electrodes and the second electrodes, the first insulating layer including an organic material, wherein, in a touch mode, one or more of the first electrodes and one or more of the second electrodes crossing each other form a touch sensing capacitor, and wherein, in a multi-view mode, the first electrodes and the second electrodes apply an electric field to the optical conversion layer, the electric field depending on a voltage difference between the first electrode and the second electrode, to generate different phase differences.
Abstract:
A display device includes a signal controller and a data driver. The signal controller processes an input image signal to generate an output image signal. The signal controller processes the input image signal using a correction unit. The correction unit corrects the input image signal to a first gray scale value greater than 0 gray scale value when the gray scale value of the input image signal is 0. The output image signal is based on the corrected input image signal. The data driver converts the output image signal into a data voltage to be applied to a display panel.
Abstract:
A 3-dimensional image display device and a driving method thereof, the method including using a first array of a matrix of unit pixels to form an image while a remaining array of the unit pixels displays black, and forming openings in a barrier panel to expose the unit pixels of the first array, the width of the openings ranging from 1.5 to 2 times the width of the exposed unit pixels.