Abstract:
The present disclosure relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-Generation (4G) communication system such as Long Term Evolution (LTE). A signal transmission method based on a filter bank, includes obtaining by a transmitter pre-equalization information, wherein the pre-equalization configuration information indicates whether pre-equalization is enabled, if the pre-equalization configuration information indicates that the pre-equalization is enabled, generating by the transmitter pre-equalization coefficients according to a pre-equalization manner, and performing pre-equalization operation to transmission signals according to the pre-equalization coefficients, and performing modulation based on the filter bank.
Abstract:
The present disclosure relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-Generation (4G) communication system such as Long Term Evolution (LTE). The present disclosure provides a method and device for suppressing an inter-cell interference. The method includes receiving, from an adjacent BS, information associated with a first multiple access resource configured for a serving terminal of the adjacent BS and configuring a second multiple access resource for a serving terminal of the BS based on the information of the first multiple access resource. The method also includes transmitting, to the serving terminal of the BS, information associated with the second multiple access resource and receiving, from the serving terminal of the BS, data allocated based on the second multiple access resource, wherein the second multiple access resource is different from the first multiple access resource.
Abstract:
The present disclosure provides a hybrid duplex communication method and apparatus. Configuration information is obtained. The configuration information includes locations of special sub-frames on the first carrier, and a transmission direction of each sub-frame on the second carrier. Sounding Reference Symbol (SRS) is sent on a special sub-frame. when all sub-frames on the second carrier are UL sub-frames, the UE may communicate with the BS on the first carrier and the second carrier according to the FDD mode; when the second carrier is used for UL and DL transmission in time division multiplexing mode, the UE may communicate with the BS on DL resources of the first carrier and UL resources of the second carrier according to the FDD mode, and/or, the UE may communicate with the BS on DL resources of the second carrier and UL resources of the second carrier according to the TDD mode.
Abstract:
The present disclosure relates to a pre-5th-generation (5G) or 5G communication system to be provided for supporting higher data rates beyond 4th-generation (4G) communication system such as a long term evolution (LTE). Various examples of the present disclosure provide a method of allocating sounding reference signal (SRS) resources. A base station of a target cell receives information of first cell edge terminals in an adjacent cell transmitted by the adjacent cell. The base station allocates SRS resources for a terminal in the target cell according to information of second cell edge terminals in the target cell and the information of the first cell edge terminals, and transmits information of the allocated SRS resources to the terminal. According to the mechanism, when there are cell edge terminals in both the target cell and the adjacent cell, it can be guaranteed that all SRS resources allocated to cell edge devices in the target cell are orthogonal to those allocated to cell edge devices in the adjacent cell. Thus, the impact of pilot contamination on system performances may be remarkably reduced.
Abstract:
The present disclosure relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-Generation (4G) communication system such as Long Term Evolution (LTE). The base station determines a cell edge user, receives information of a cell edge user in an adjacent cell; according to the information of cell edge users in the cell and the adjacent cell, establishes a virtual cell including the cell edge users, transmits configuration information of the cell edge user in the cell and configuration information of the cell to base stations each of which a cell edge user in the virtual cell is located at, and receives configuration information of each cell edge user and configuration information of a cell where the each cell edge user is located from a base station where the each cell edge user is located, and configures uplink-downlink resources and a transmission mode for the virtual cell.
Abstract:
The present disclosure discloses cache-based data transmission methods and apparatuses. The method is implemented as follows. An apparatus where a caching node is located reports a caching capability to a network side, and the caching node is configured to cache data. The network side sends a cache indicating parameter to the apparatus where the caching node is located, and maintains a data list. Wherein, the cache indicating parameter is configured to control the caching node to cache the data which has the property of high repetition probability and/or high cache utilization, and the data list is a list of the data cached in the caching node. When the caching node has cached data requested by a UE, the UE obtains the requested data from the caching node.
Abstract:
The present disclosure relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-Generation (4G) communication system such as Long Term Evolution (LTE). Provided is a method of transmitting signals in an FBMC/OQAM system. Data symbols transmitted in category-2 data symbols or category-3 data symbols are determined according to interference from all of adjacent OQAM data symbols and an intrinsic interference coefficient of category-2 data symbols interference experienced by category-3 data symbols in a user data block, so that transmission symbols in the category-3 data symbols composed of transmitted data symbols and interference include target data symbols of the category-3 data symbols and target data symbols of the category-2 data symbols. A transmitting device transmits the data symbols of the category-3 data symbols and data symbols transmitted in category-2 data symbols together with other data symbols in the user data block.
Abstract:
The present disclosure relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-Generation (4G) communication system such as Long Term Evolution (LTE). A method for operating a receiving device in a wireless communication system comprises determining inter-symbol interference between symbols in a received signal, determining a location of a receive detection window according to the inter-symbol interference, and demodulating the received signal based on the location of the receive detection window. A receiving device includes at least one transceiver, and at least one processor configured to determine inter-symbol interference between symbols in a received signal, determine a location of a receive detection window according to the inter-symbol interference, and demodulate the received signal based on the location of the receive detection window. A transmitting device includes at least one processor configured to estimate an equivalent channel frequency response based on characteristic information of a time-domain filter, estimate an inter-symbol interference based on the equivalent channel frequency response, and generate indication information regarding an adjustment of a location of a receive detection window.
Abstract:
The present disclosure relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-Generation (4G) communication system such as Long Term Evolution (LTE). A signal transmission method based on a filter bank, includes obtaining by a transmitter pre-equalization information, wherein the pre-equalization configuration information indicates whether pre-equalization is enabled, if the pre-equalization configuration information indicates that the pre-equalization is enabled, generating by the transmitter pre-equalization coefficients according to a pre-equalization manner, and performing pre-equalization operation to transmission signals according to the pre-equalization coefficients, and performing modulation based on the filter bank.
Abstract:
A method and an apparatus for transmitting a reference signal. A first reference signal is generated according to a data signal, an interference relationship between adjacent carriers, and a predefined second reference signal. The data signal and the first reference signal is modulated and sent on a corresponding carrier utilizing non-orthogonal multi-carrier modulation waveform. A method for receiving a reference signal includes receiving, on a reference signal carrier, a first reference signal modulated utilizing non-orthogonal multi-carrier modulation waveform, processing the received first reference signal using a predefined processing method, performing channel estimation or synchronization according to a result of the processing and a predefined second reference signal.