Abstract:
Embodiments relate to a communication method and system for converging a 5G communication system for supporting higher data rates beyond a 4G system with an IoT technology. Embodiments may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. Embodiments provide a scheme for efficiently operating an UP connection of a session in case where a terminal has a plurality of sessions in a mobile communication system, such as a 5G system, having a network structure in which an AMF for mobility management and an SMF for session management are separated from each other. A terminal (UE) can optimize a non-access stratum (NAS) signaling message, and can perform data transmission/reception with low latency.
Abstract:
The present invention relates to a method and an apparatus for searching for an access point of a terminal in a wireless communication system, and the method for searching for an access point of a terminal in a wireless communication system according to the present invention comprises the steps of: transmitting a probe request frame including an identifier for searching for a specific access point; receiving a probe response frame transmitted from the access point related to the identifier; and connecting to the access point having transmitted the probe response frame.
Abstract:
The present invention relates to a communication system and method for merging, with IoT technology, a 5G communication system for supporting a data transmission rate higher than that of a 4G system. The present invention provides a system and method by which a user equipment (UE) transmits, to an access and mobility management function (AMF), a first message including information related to a network slice in a first authentication, and receives, from the AMF, a third message including a result of a second authentication, wherein whether to require the second authentication is determined by the AMF based on the information and subscription information, and wherein the second authentication between the UE and a server is triggered based on the determination.
Abstract:
The present disclosure relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-Generation (4G) communication system such as Long Term Evolution (LTE). The embodiments in the present disclosure allow to transfer remaining data between different base stations in a dual-registration interworking process, which provides terminal mobility between 4G and 5G networks without a data loss. Further, it provides the terminal mobility with no data loss without changing 5G and 4G base station implementation through addition of a simple function of new equipment, such as SMF and UPF. Further, it supports different QoS and forwarding path units in the 5G/4G networks without changing 5G and 4G base station functions. Further, it exempts additional function implementation costs for re-ordering in a terminal and a network through in-order delivery of packets to the terminal without changing the packet order during 4G-5G network movement.
Abstract:
The present disclosure relates to a 5G or pre-5G communication system for supporting a data transmission rate higher than that of a 4G communication system such as LTE. According to one embodiment of the present invention, the present invention comprises the steps of: an access and mobility management function (AMF) of a 5G core network determining whether a terminal has moved to an area in which packet transmission/reception is possible, or an area in which packet transmission/reception is impossible; transmitting a message including information on the determination result to a session management function (SMF); and transmitting a response message including information associated with a change in the state of a session to the terminal. In addition, the present invention relates to a method and a device for blocking or allowing the transmission/reception of a packet transmission session (PDU session) according to the position of a terminal in a 5G system. In a 5G system, a local area data network service by which a packet session is valid only in a specific area will be supported, and a method is required for allowing the transmission of a packet of a session only in an area that can be divided into a cell or a tracking area. Additionally, in a 5G system, an allowed area in which the transmission/reception of a packet of a session according to each position of a terminal is allowed, and a non-allowed area in which same is not allowed are present, and thus packet transmission may be allowed or not according to area. In order to provide such service, the present invention provides a procedure whereby the state of a session is defined in a packet transmission non-allowed area, and a change in the state of the session occurs when moving from a packet transmission-allowed area to the non-allowed area.
Abstract:
The present invention defines signaling required for separating a network entity (NE) responsible for mobility management (MM) and session management (SM), which are main function of a control plane (CP) in a next generation (NextGen) mobile communication system, and presents a basic procedure for providing mobile communication services including the signaling. Therefore, complexity of core equipment responsible for the CP is reduced in order to implement a network slice function and provide various levels of mobility, and an effect of minimizing a signaling load therebetween can be obtain. In addition, it is possible to efficiently manage the resources of a base station (radio access network (RAN)) and a user plane network entity (UP NF).
Abstract:
A communication method and system converges a 5G communication system for supporting higher data rates beyond a 4G system with an IoT technology. The system and method may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. Embodiments provide a scheme for efficiently operating an UP connection of a session in case where a terminal has a plurality of sessions in a mobile communication system, such as a 5G system, having a network structure in which an AMF for mobility management and an SMF for session management are separated from each other. A terminal (UE) can optimize a non-access stratum (NAS) signaling message, and can perform data transmission/reception with low latency.
Abstract:
The present disclosure relates to a communication method and system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT). The present disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. The present disclosure further relates to a method by a session management function (SMF) in a network including a session that is established via a first user plane function (UPF). The method includes determining whether to change the first UPF to a second UPF, and transmitting, to a terminal via an access and mobility function (AMF), a first message including a maintain time of the session established via the first UPF, when the first UPF needs to be changed.
Abstract:
The present invention relates to a communication method for merging, with IoT technology, a 5G communication system for supporting a data transmission rate higher than that of a 4G system, and a system therefor. The present invention can be applied to an intelligent service (for example, smart home, smart building, smart city, smart car or connected car, healthcare, digital education, retail, security and safety related services, and the like) on the basis of a 5G communication technology and an IoT-related technology. The present invention provides a method by which a terminal requests authentication from a 3rd party server comprises the steps of: transmitting, to a common control function providing device (common control plane network function serving unit), a service request message including a tenant ID and a slice type provided by an application related to the 3rd party server; receiving a service response message including information on the limited data session from the network slice instance management device when a network slice instance management device (network slice instance unit) selected by the common function providing device generates a limited data session (limited packet data unit session) for authentication between the terminal and the 3rd party server on the basis of the service request message; and transmitting an authentication request message requesting authentication of the terminal through the limited data session to the 3rd party server on the basis of the service response message.
Abstract:
The present disclosure relates to a communication method and system for converging a 5G communication system for supporting higher data rates beyond a 4G system with an IoT technology. The present disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. The present disclosure provides a scheme for efficiently operating an UP connection of a session in case where a terminal has a plurality of sessions in a mobile communication system, such as a 5G system, having a network structure in which an AMF for mobility management and an SMF for session management are separated from each other. Through the present disclosure, a terminal (UE) can optimize a non-access stratum (NAS) signaling message, and can perform data transmission/reception with low latency.