Abstract:
A glass ceramic article is provided so that a reliable coloring with a defined transmittance is ensured. The reliable coloring of the glass ceramic article is based on a high content of iron oxide of more than 0.1 percent by weight which itself has a strongly coloring effect does not further reduce transmittance but rather interacts with vanadium oxide to attenuate the absorption caused by vanadium oxide.
Abstract:
A product having a transparent volume-coloured glass-ceramic is provided. The glass-ceramic includes, based on oxide, 58-72% by weight SiO2, 16-26% by weight Al2O3, 1.0-5.5% by weight Li2O, 2.0-
Abstract:
A transparent colored glass ceramic, in particular an LAS glass ceramic, suitable for use as a cooking surface is provided. The transparent colored glass ceramic includes high-quartz solid solution (HQ s.s.) as a main crystal phase and exhibits thermal expansion of −1 to +1 ppm/Kin the range from 20° C. to 700° C. The glass ceramic has from 3.0 to 3.6 percent by weight of lithium oxide (Li2O) as constituents and either is colored with 0.003 to 0.05 percent by weight of vanadium oxide (V2O5) or is colored with 0.003 to 0.25 percent by weight of molybdenum oxide (MoO3).
Abstract:
A fitout article or article of equipment for a kitchen or laboratory is provided. The article has a display device, a separating element, and a covering. The covering is on an interior side of the separating element and has a cutout at the separating element. The separating element has a light transmittance of at least 5% and at most 70%. The covering has light transmittance of at most 7% and a colour locus in the CIELAB colour space with coordinates L* of 20 to 40, a* of −6 to 6 and b* of −6 to 6, and the colour locus of D65 standard illuminant light, after passing through the substrate, is within a white region W1 determined in the chromaticity diagram CIExyY-2° by the coordinates: White region W1 x Y 0.27 0.21 0.22 0.25 0.32 0.37 0.45 0.45 0.47 0.34 0.36 0.29.
Abstract:
A display device in particular for cooktops is provide that has a glass ceramic with a front side and a back side and a lamp arranged in the area of the back side. The display device further includes an optical compensation filter arranged between the front side and the lamp so as to implement any color impressions easily and inexpensively and in a preselectable manner.
Abstract:
A product is provided that includes a volume-colored monolithic glass or glass ceramic element and to a method for producing same. The glass or glass ceramic element has a first region in which the coloration is modified so that light transmission of the first region differs from light transmission of a second, adjacent region. The light scattering in the region of modified coloration in the glass or glass ceramic remains the same as light scattering in the second, adjacent region with non-modified light transmission.
Abstract:
A cooktop with a graphical display device is provided. The cooktop includes a glass ceramic substrate with a dead-front effect in which lightness differences in the display area and in particular differences between the latter and the adjacent areas of the cooktop are not visible for a user from the exterior. The cooktop has a glass or glass ceramic substrate and a display device with a display surface for displaying information by emission of light, wherein the display device is in the interior of the cooktop or cooking appliance such that light emitted from the display surface passes through the glass or glass ceramic substrate and is perceptible by a user in the exterior.
Abstract:
A cooktop is provided that has a glass ceramic cooking plate, at least one heater arranged below the glass ceramic cooking plate, and at least one touch sensor. The touch sensor is operable across the glass ceramic cooking plate for adjusting the power of the at least one heater. The glass ceramic cooking plate has an increased strength and is therefore produced with a reduced thickness, whereby the sensitivity and reliability of the touch sensor is significantly improved.
Abstract:
A transparent low-colour lithium aluminium silicate (LAS) glass ceramic and the use thereof are provided. The ceramic has an environmentally friendly composition with high-quartz mixed crystals as the main crystal phase. The glass ceramic contains the following components (in wt % on the basis of oxide): TiO2 1.6- CaO+SrO +BaO. In some embodiments, the glass ceramic has a hue c* of less than 5.5, a light transmission Y greater than 81% and has no visually disruptive diffusion.
Abstract translation:提供透明的低色度硅酸锂(LAS)玻璃陶瓷及其用途。 该陶瓷具有以高石英混晶为主要结晶相的环保组合物。 玻璃陶瓷含有以下组分(以氧化物为基准的重量%):TiO 2 1.6- <2.5; Nd2O3 0.005-0.15; MgO 0.2-1.0; ZnO 1-2.5; CaO + SrO 0-1.5; BaO 0-1.5,条件B1:MgO + ZnO> CaO + SrO + BaO。 在一些实施例中,玻璃陶瓷具有小于5.5的色调c *,大于81%的透光率Y,并且没有视觉上的破坏性扩散。
Abstract:
A volume-colored monolithic glass ceramic cooking plate is provided. The plate includes a first zone in which the coloration of the glass ceramic differs from that of a second, adjacent zone, so that an absorption coefficient of the first zone is lower than the absorption coefficient of the second, adjacent zone and so that integral light transmission in the visible spectral range is greater in the first zone than the integral light transmission of the second, adjacent zone. The light scattering in the glass ceramic of the first zone differs from light scattering in the glass ceramic of the second zone by not more than 20 percentage points, preferably by not more than 5 percentage points.