Abstract:
An AC capacitor is coupled to a totem-pole type PFC circuit. In response to detection of a power input disconnection, the PFC circuit is controlled to discharge the AC capacitor. The PFC circuit includes a resistor and a first MOSFET and a second MOSFET coupled in series between DC output nodes with a common node coupled to the AC capacitor. When the disconnection event is detected, one of the first and second MOSFETs is turned on to discharge the AC capacitor with a current flowing through the resistor and the turned on MOSFET. Furthermore, a thyristor may be simultaneously turned on, with the discharge current flowing through a series coupling of the MOSFET, resistor and thyristor. Disconnection is detected by detecting a zero-crossing failure of an AC power input voltage or lack of input voltage decrease or input current increase in response to MOSFET turn on for a DC input.
Abstract:
A rectifying circuit including: between a first terminal of application of an AC voltage and a first rectified voltage delivery terminal, at least one first diode; and between a second terminal of application of the AC voltage and a second rectified voltage delivery terminal, at least one first anode-gate thyristor, the anode of the first thyristor being connected to the second rectified voltage delivery terminal; and at least one first stage for controlling the first thyristor, including: a first transistor coupling the thyristor gate to a terminal of delivery of a potential which is negative with respect to the potential of the second rectified voltage delivery terminal; and a second transistor connecting a control terminal of the first transistor to a terminal for delivering a potential which is positive with respect to the potential of the second rectified voltage delivery terminal, the anode of the first thyristor being connected to the common potential of voltages defined by said positive and negative potentials.
Abstract:
An AC/DC converter includes: a first terminal and a second terminal for receiving an AC voltage and a third terminal and a fourth terminal for supplying a DC voltage. A rectifying bridge includes input terminals respectively coupled to the first terminal and the second terminal, and output terminals respectively coupled to the third terminal and fourth terminal. A first branch of the rectifying bridge includes, connected between the output terminals, two series-connected thyristors with a junction point of the two thyristors being connected to a first one of the input terminals. A second branch of the rectifying bridge is formed by series connected diodes. A control circuit is configured to generate control signals for application to the control gates of the thyristors.
Abstract:
A rectifying circuit including: between a first terminal of application of an AC voltage and a first rectified voltage delivery terminal, at least one first diode; and between a second terminal of application of the AC voltage and a second rectified voltage delivery terminal, at least one first anode-gate thyristor, the anode of the first thyristor being connected to the second rectified voltage delivery terminal; and at least one first stage for controlling the first thyristor, including: a first transistor coupling the thyristor gate to a terminal of delivery of a potential which is negative with respect to the potential of the second rectified voltage delivery terminal; and a second transistor connecting a control terminal of the first transistor to a terminal for delivering a potential which is positive with respect to the potential of the second rectified voltage delivery terminal, the anode of the first thyristor being connected to the common potential of voltages defined by said positive and negative potentials.
Abstract:
An AC/DC converter includes a first terminal and a second terminal for receiving an AC voltage and a third terminal and a fourth terminal for delivering a DC voltage. Two transistor switches are series-connected between the third and fourth terminals, with their junction point connected to the first terminal. Two controllable rectifying elements are series-connected between the third and fourth terminals, with their junction point connected to the first terminal or to the second terminal. The two controllable rectifying elements are phase-angle controlled.
Abstract:
A circuit capable of receiving, in series with at least one light-emitting diode, a rectified A.C. voltage, comprising: a first gate turn-off thyristor connected to first and second terminals of the circuit; and a control circuit for turning off the first thyristor when the voltage between the first and second terminals exceeds a threshold.
Abstract:
A circuit can be used for charging a capacitor with an AC voltage. In one embodiment, the circuit includes a capacitor coupled to be charged with the AC voltage. An adjustment is configured to adjust a capacitor charge speed according to a value of the AC voltage. The adjustment circuit includes at least one bipolar transistor coupled to receive a voltage at a base of the bipolar transistor. The voltage is a function of the value of the AC voltage.