Abstract:
A continuous liquid interface production system includes a source of optical stimulation. The system includes a vessel configured to retain a pool or film of optically sensitive monomer and a substantially optically transparent plate retained by the vessel. The optical stimulation is directed through the plate and into the pool or the film based upon a sliced 3D model of the part. The system includes source of reaction inhibitor wherein the substantially optically transparent plate allows the reaction inhibitor to permeate through the plate and into the pool or the film such that a sufficient amount of reaction inhibitor is within the pool or the film to create a zone proximate the plate that prevents polymerization therein. A build platen is configured to be at least partially immersed into the pool or the film and above the zone as a part is initially being built, wherein a build platen actuator moves the build platen away from the pool or the film in a direction substantially normal to a top surface of the plate. A relative movement actuator provides relative movement between the plate and the part in a direction substantially parallel to the top surface of the plate such that a viscosity pump effect is created that forces monomer between the part being built and the plate.
Abstract:
A part material for printing three-dimensional parts with an electrophotography-based additive manufacturing system, the part material including a composition having a semi-crystalline thermoplastic material and a charge control agent. The part material is provided in a powder form having a controlled particle size, and is configured for use in the electrophotography-based additive manufacturing system having a layer transfusion assembly for printing the three-dimensional parts in a layer-by-layer manner.
Abstract:
A continuous liquid interface production system includes a source of optical stimulation. The system includes a vessel configured to retain a pool or film of optically sensitive monomer and a substantially optically transparent plate retained by the vessel. The optical stimulation is directed through the plate and into the pool or the film based upon a sliced 3D model of the part. The system includes source of reaction inhibitor wherein the substantially optically transparent plate allows the reaction inhibitor to permeate through the plate and into the pool or the film such that a sufficient amount of reaction inhibitor is within the pool or the film to create a zone proximate the plate that prevents polymerization therein. A build platen is configured to be at least partially immersed into the pool or the film and above the zone as a part is initially being built, wherein a build platen actuator moves the build platen away from the pool or the film in a direction substantially normal to a top surface of the plate. A relative movement actuator provides relative movement between the plate and the part in a direction substantially parallel to the top surface of the plate such that a viscosity pump effect is created that forces monomer between the part being built and the plate.
Abstract:
A part material for printing three-dimensional parts with an electrophotography-based additive manufacturing system, the part material including a composition having an engineering-grade thermoplastic material and a charge control agent. The part material is provided in a powder form having a controlled particle size, and is configured for use in the electrophotography-based additive manufacturing system having a layer transfusion assembly for printing the three-dimensional parts in a layer-by-layer manner.
Abstract:
A part material for printing three-dimensional parts with an electrophotography-based additive manufacturing system, the part material including a composition having a high-performance thermoplastic material and a charge control agent. The part material is provided in a powder form having a controlled particle size, and is configured for use in the electrophotography-based additive manufacturing system having a layer transfusion assembly for printing the three-dimensional parts in a layer-by-layer manner.
Abstract:
A part material for printing three-dimensional parts with an electrophotography-based additive manufacturing system, the part material including a composition having an engineering-grade thermoplastic material and a charge control agent. The part material is provided in a powder form having a controlled particle size, and is configured for use in the electrophotography-based additive manufacturing system having a layer transfusion assembly for printing the three-dimensional parts in a layer-by-layer manner.
Abstract:
An additive manufacturing system for printing a three-dimensional part using electrophotography, the additive manufacturing system comprising a rotatable photoconductor component, a development station configured to develop layers of a material on a surface of the rotatable photoconductor component, a rotatable transfer medium configured to receive the developed layers from the surface of the rotatable photoconductor component, and a platen configured to receive the developed layers from the rotatable transfer medium in a layer-by-layer manner. The additive manufacturing system also comprises a plurality of service loops configured to move portions of the rotatable transfer medium at different line speeds while maintaining a net rotational rate of full rotations of the rotatable transfer medium at a substantially steady state.
Abstract:
An additive manufacturing system comprising a transfer medium configured to receive the layers from a imaging engine, a heater configured to heat the layers on the transfer medium, and a layer transfusion assembly that includes a build platform, and is configured to transfuse the heated layers onto the build platform in a layer-by-layer manner to print a three-dimensional part.